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Abstract

Multi-element antennas offer the possibility of incre@sithe spatial reuse of wireless spectrum by “nulling”
out interfering signals. However, the interference supgian performance is highly sensitive to small errors in the
gains applied to the antenna elements. In this paper, weiggamdetail the effect of one specific source of error
that arises from quantizing array weights. We show that gkrapproach based on scalar quantization that ignores
the correlation of the quantization errors fails to fullyiliae the interference suppression capability of the array
the residual interference level does not decrease with tingber of antennas. Unfortunately, the optimum approach
to computing the weights involves vector quantization caespace that grows exponentially with the number of
antennas and number of quantization bits, and is thereforgatationally intractable. We propose instead a simple
suboptimal method that greedily optimizes SIR coefficigntbefficient. Simulations show that this greedy approach
provides substantial SIR gains over the naive approach, 8liR growing polynomially in the number of antennas.
We derive analytical bounds that indicate that even larg® @ains (exponential in the number of antennas) are
potentially achievable, so that finding tractable algoni#ithat improve upon our suboptimal approach is an important
open problem.

. INTRODUCTION

The use of multiple antennas offers the potential of sigaifity improving the performance and capacity
of interference-limited wireless communication systemvgh applications including spatial multiplexing over a
point-to-point link, multipacket reception, and uncoaratied spectrum sharing among different networks. Standard
interference suppression techniques include beamformgigg the zero-forcing (ZF) or linear minimum mean-
squared error (MMSE) criterion. In modern “mostly digitafansceiver architectures, beamforming is typically
implemented digitally, using quantized weight vectors.thiis paper, we examine the effect of such coefficient
guantization on interference suppression performanesispally focusing on the performance of quantized version
of a ZF receive beamformer which steers nulls in the directad the interfering signals. Since the MMSE
beamformer tends to the ZF beamformer at high signal-tsencatio (SNR), we expect our results to also apply,
at least qualitatively, to the MMSE beamformer in regimesemhinterference, rather than noise, is the dominant
impairment.

We find that quantization of the beamforming weights can a@tially degrade interference suppression perfor-
mance if performed in naive fashion, which could severatjtliour ability to exploit the large spatial multiplexing
gains that are theoretically available with multiple amas Specifically, while the contribution of the desired
signal to the beamformer output is highly robust to quatitzeerror in the beamforming weights, far more precise
control of the weights is required to effectively steer aullndeed, it is clear that, with probability one, perfect
nulling of even a single interferer is no longer possible.aMive would still hope for, however, is that the Signal to
Interference Ratio (SIR) scales up as quickly as possibile i the number of antennas, and degrades as slowly
as possible withK', the number of interferers.

Our main results are summarized as follows:

1) A naive strategy of coefficient-by-coefficient quantiaatof the ZF beamforming weights has poor perfor-
mance: the SINR scales &/ K, as it would for a spatial matched filter. That is, we obtaia tombining
gains for the desired signal, but increasing the number gfess of freedoniV does not lead to any improved
scaling in the residual interference power at the outpuheflieamformer.



2) We provide analytical estimates that indicate that weukhbe able to perform much better than the naive
strategy. An upper bound implies that the SINR could po&dligtigrow exponentially fast withV, while a
pessimistic estimate indicates that the SINR should groleast as fast ad’2. This motivates the search for
improvements to the naive “scalar quantization” strategy.

3) We propose a suboptimal “vector quantization” strategwhich each coefficient is optimized sequentially to
maximize SINR, starting from the naive solution. This gnesegquential strategy yields substantial gains in
SINR over the naive strategy, demonstrating the polynogniaWwth of the kind predicted by the pessimistic
analytical estimates.

4) We provide extensive simulation results for various tefyges. While optimal vector quantization of the
beamforming weights is computationally infeasible forgkarN, exhaustive search for smal is found
to perform significantly better than the greedy sequentiedtsgy, possibly even leading to exponential
dependence oV. Finding computationally efficient vector quantizatiomg@iithms that can approach the
performance of the optimal solution therefore remains apartant open problem.

Related Work. To the best of our knowledge, this paper is the first systematamination of the effect of
guantization of antenna weights on interference supmressliowever, quantization in MIMO wireless systems has
been extensively studied in many contexts in previous wéHe most notable example of this is the work on the
design of codebooks in channels with limited channel-steg¢elback [1], [2], where the goal is to find transmit
beamforming vectors that maximize tidesired signal contribution at the receiver. This problem has besows
to be related to the problem of sphere-packing in a Grassmananifold [3], and the geometry of vectors on the
multi-dimensional hypersphere proves to be important tdeustanding the codebook design problem [4]. While
the geometry of the hypersphere also provides insights iimtrference suppression and gives us an analytical
upper-bound on the interference suppression levels, riistout that the problem of finding vectoosthogonal to
a given vector in the hypersphere is more involved than theeigppacking problem. We briefly remark on some
open issues related to this in Section VI.

Outline: In Section I, we describe a simple interference suppresgimblem and show that naive scalar
guantization incurs a severe performance penalty. Sedtlooontains analytical estimates of the performance
that can be achieved with vector quantization, with optiimiestimates predicting exponential gains of SIR wih
and pessimistic estimates predicting polynomial gain&daotion 1V, we describe an algorithm that can significantly
improve the performance using a greedy sequential vectantigation strategy. Extensive simulation results are
provided in Section V, while Section VI contains our condns.

[I. THE INTERFERENCE SUPPRESSION PROBLEM

We begin by considering a multi-antenna receive beamfagrsiysstem, where the goal is to maximize the array
gain in the direction of a desired transmittein this section, we analyze the effect of errors in the cha@itantenna
weights. For clarity we focus on a simple setup where a recaiith aN element antenna array receives the desired
signal that has the (complex baseband) channel bair= [ho[1], ho[2], ... ho[N]] and an interfering signal
with channel gairh; = [hy[1], hi[2], ... hi[N]]? where the components of the channhls h; are drawn
from iid complex Gaussian distributions i.e. Rayleigh fegli This setup can be readily generalized to multiple
interferers and to Rician or Line-of-Sight channels and ater present some simulation results to show that the
same ideas extend to more general setups. Indeed, we lasenprarguments that show that a Rayleigh fading
channel represents a worst-case scenario in dealing wihtqed weights.

A. Problem Satement
We begin by presenting a quick review of the theory behind patattions of the optimum beamforming weights.
The incoming signal at the input of the arrgyn] is the sum of the desired signal and interference and noise:
y[n] = hod[n] + hyd; [n] + vn]

1A similar analysis also applies to a transmit array that seekminimize its interference at given locations. We focustloe receive
array in this paper for clarity.
2We will denote scalars in lower case, vectors in bold lowesecand matrices in bold upper case.



whered[n] is the desired signali;[n] is interfering signal, and’[n] is the white noise vector at the receiver with
varianceo?). For simplicity, we shall assume that the desired and fietieig signals have the same power i.e. are
drawn from Rayleigh distributions with the same variancaaolvhwe set to unity without loss of generality.

Using array weightsv, ||w|| = 1, the signal at the output of the array will ke y[n] and the resulting output
SINR is given by:
[w'ho|>

SINRout = Ui B+ 02

where(-)" denotes the complex conjugate transpose. In the absenstedéience, the output signal to noise ratio
(SNR) is maximized by choosing

ho [[hol|?
Wopt = 7—, SNRgpt = 1
" Tl PN T D
Note that when averaged over the fading channel gginthe SNR varies as
E[||hol|?] _ N
E[SNRy] = 7[”020” I = @)

In other words, the SNR increases linearly with the numbeargénnasV. Physically a larger array permits higher
antenna directivities which accounts for this increaseteNbat the “effective noise powetw’ v|?> = o2 does not
increase with/V.

When an interferer is present, complete interference tiejecan be achieved by choosing a beamforming weight
vectorw that is the projection of the desired veclay onto the subspace orthogonal to the interference végtor

1
Wopt = Wprojection = o — hthhO (3)
Dt project h{{hl 1

If we let§; = cos™! (%) be the “angle” between the desired and interference chamwebrs, we can write

the SNR from the projection beamformer as

hg||? sin? #
SNR,pt = HOHU721 4)

When averaged over the fading channel gdigs h;, we still get a linear increase in SNR witN:
2 32
E[SNR,p] = Ellholl"sin”6:] , N
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The final inequality in (5) is based on the observation ﬂﬁ@sinz 01] > % which is derived in Equation (27) in
Appendix I.

The projection-based beamformer (3) does not take noige astount. In general, maximizing the output
SINR does not necessarily require complete interferenggctien; reducing the interference to the noise level
may be sufficient. Optimizing the output SINR leads to the iMum Variance Distortionless Response (MVDR)
beamformer [5]. If we define the noise+interference coti@amatrix Ry = hlh{H + 021y wherely is the
N x N identity matrix, then the output SINR can be maximized byasiog w,,:

-1
RN+Ih0
hiRyL ho
The denominator in (6) is a normalizing factor. When theriiei@nce power is much larger than the noise power,
both projection and MVDR yield virtually identical resulfEhis is typically the case in bandwidth-limited wireless

links and we focus on this case exclusively in this papemetoee the resulting SINR is still approximately given
by (4) and its variation withV by (5).

Wopt = WMVDR = (6)

Note thatd; is an angle inNV-dimensional space, and does not correspond to a physieation.



B. Effect of errorsin weights

In practice the weights that are actually applied to theyasgkements may differ from the optimum desired
weight from (3) for many reasons such as errors in channehason, calibration errors and quantization effects.
Let w be the weight applied to the array. We will assume that % where the real and imaginary
parts (in-phase and quadrature) of each component of thghtverror vectorAw arei.i.d. zero mean random
variables with variancgk-o2.

Remark. Since any scaled version of the vecwryields the same SINR, we constrain to be a unit vector
i.e.||w|| =1 in order to eliminate this ambiguity. In practice, the weigipplied to each antenna element usually
varies between fixed limits e.g—1, 1), and this weight is quantized to a fixed number of bits. Thesuériance
of each component of the quantization error vecdow is also fixed. However, because of the scale invariance of
the SINR, we choose to impose the unit vector constraint falyaical convenience (instead of the fixed dynamic
range constraint). As a result, the componentsvo$cale as——, and the variance of the quantization noise also
scales inversely withV since quantization error varies proportionally with thendynic range of the elements of
w itself. In other wordsE[||Aw|[?] = 02 independent ofV.

Intuitively, the errorsAw result inw deviating fromw,,; by an “angle”6,, = cos™* (|w.,w|). This deviation
will result in a reduction in the signal strength in the dedidirection as well as an increase in the interference
power, sincew will no longer be orthogonal the interference subspace.ddsred power is proportional i@s 6,,,
and the increase in interference (leakage) is proportitmsin 6,, (see Figure 1). For small anglég, we can use
the standard approximation& 6,, =~ 6,, andcos 8,, =~ 1. This explains why nulls are more sensitive than peaks to
phase and amplitude errors, sirgie # changes more rapidly thatws § when@ is small.

Thus taking the errordw into account, we can update (1) for the SNR in the absenceteffénence as

|wHh|?
|[wl|?02

_ \wi ho + Aw'hg|?

SNR =

oy
> SNR (1 — || Aw]|)? Y
This implies that the SNR averaged over the fading still ss@s/N:
E[SNR] > a x E[SNRy] (8)

with at most only a constant factor loas= E[(1 — ||Aw]|[)?] > (1 — ¢2) due to the errors.
Now, let us consider the effect of the weight erraksw on the zero-forcing beamformer in the presence of an
interferer. The SINR is given by

[wHhg?
(WHhy |* + |[Wl[*03
_lhg||sin 61 + Aw'hg
|AWThy |2 + (1 + ||Aw|]2)02
where ¢, is defined as in (4). The numerator of (9) when averaged owvemtbight errorsAw and the fading
coefficientshg, h; is lower-bounded b)JQX + 02 which scales linearly withV, and the averaged denominator equals
02 + (1 + 02)02, which is independent ol .

Thus the ratio of average signal to interference and noisgep® scales linearly withV. This seems good
considering that the SNR in the no-interferer case given®)ya(so scales linearly witlv. Note however that the
average interference power given by the denominator of (#sdnot decrease with/ even though the degrees
of freedom for interference cancellation increases; thistarkly unlike the situation without weight errors, where
a larger number of antennas permits the complete nulling tErger number of interferers. This indicates that

there might be some suboptimality in the scaling behavid®i We show next that indeed, a much better scaling
behavior can be obtained by adopting a more optimal approach

SINR =

‘ 2

9)
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Fig. 1. The optimum beamforming vectev,,; can be viewed as a projection of the desired signal onto thspsuwe orthogonal to the

intHerference subspace. The distorted beamforming vedtg; can decomposed into two orthogonal componesits;: = wipt + wﬂpt.

W1, Which is parallel tow,,., represents the potential loss in beamforming gain, anddpgtional tocos 6. vi/jpt, which is orthogonal
to wopt, represents the potential leakage into the interferenbspsce, and is proportional #n 6.

I11. I MPROVING INTERFERENCE SUPPRESSION

We now consider the problem of computing the optimal weidhtthe presence of quantization errors. Let us
represent the’th component of vectok by z[i], e.g. the weight applied to antenna eleméig w[:] and so on.
Let B be the number of quantization bits i.e. the | and Q componeihéach weight element is quantized to one
of 2B levels. There are theiv,, = 225" total weights available from which to chodséet W be the set of these
weight vectors. We can then formulate the problem of commguthe optimum weight as a SINR maximization
problem:

~ Hh 2
Wopt = arg max [% hol (10)

wew |wihy|? + ||w]||202
Remark. It is not a trivial task to compare two algorithms based orirt@NR performance. If one algorithm
outperforms another for every possible realization of thsikkd and interference channels, then it is clearly better
However, such a definition is too stringent to be useful, andractice, we may have to settle for comparing some
averages. At first glance, it seems as if the natural choicaldvbe to compare the average SINR EE[SINR];
however this measure suffers from some fundamental disdages. First of all, it is rather unwieldy analytically.
Secondly, the average can be dominated by a small numberaohehrealizations where the SINR becomes very

“Note that some of these weight vectors may be scaled versibothers, and therefordV,, is actually an upper-bound on the number
of distinct weight vectors available to choose from.



large. We, therefore choose a different measure: the rdt@verage signal power to average interference power
(we neglect noise):
E[|w ' h|?]

INR = SUW hol ]
SINR = % 2]

(11)

A. An approximate lower bound on achievable SR

The problem of choosing the optimum weight can also be considered as a problem of choosing the optimal
Aw. We have seen from (9) that the average signal power scalearly with V in the presence of the errors
Aw. However, as we have seen, the average interference povimddpendent ofV if the components oAw
are chosen independently. We show next that if the comper@#mAw are choserlependently of each other, the
interference power can be made to decrease significantty Avit

Given an interference vectdr;, our goal is to understand the tefdAw’ h, |2. Let us first consider a simpler
problem. For an interference vecthi, suppose we simply wish to minimize’ h;|?, whereu takes all possible
valuesin{ = LN{—I, +1}V (i.e. the elements @f are binary vectors normalized to unit norm). Letu) = u’h;.
Note thatZ(u) ~ CN(0,1) for any u € U since the fading coefficients df; are assumed to bé N (0, 1). Note
also thatZ(u;), Z(uy) are jointly proper complex Gaussian with covariance (andmnadized correlation) equal
to u{{ug. Let us now choose a subddt of &/ which forms an orthonormal basis iN dimensions: the Walsh-
Hadamard codes. ThefZ(u) : u € U, } are N uncorrelated, and hence independénly (0, 1) random variables.
The corresponding power§Z(u)|?,u € U, } are therefore exponential random variables with mean one.

The minimum interference power can now be upper bounded as

. = mi 2 < mi 2
Prnin = min | Z(w)* < min |2 ()| (12)

It is easy to show that the minimum &f i.i.d. exponential random variables of mean one is an expiggandom
variable with meant-. Thus, for our simplified model, the interference power esalown at least as fastaswith
N.

Let us now return to our original problem. ConsidéfAw) = Aw’ h;. For each coefficient of the ZF weight
vector, suppose that we restrict ourselves to two optiomsnd both |1 and Q coefficients up or round them both
down. Thus, if the quantization interval is, the corresponding coefficient @w is being set to-(A — X)) or X,
respectively, whereX is the distance of the unquantized coefficient from the otkeft edge of the quantization
bin in which it falls. Thus, if we let +1 indicate rounding dova coefficient, and -1 indicate rounding up, there
are2V possible choices oAw with this strategy, which map to the vectorslih= LN{—I, +1}¥ considered in
our prior simplified example. While the Walsh-Hadamard wvexti; no longer yield uncorrelated Gaussian random
variablesZ(b;) when the distribution of the’s are taken into account, sinéeis an N-dimensional vector space,
it is always possible to find a set of basis vectogswhich yield uncorrelated random variablégv;) and for
which (12) holds. This leads us to expect that the minimurarfatence power here will also fall off at least as
fast as%. We plan to continue to work on refining these arguments, aqkho present a sharper result at the
conference.

B. A geometric upper-bound on achievable SR

Consider the N-dimensional hypersphere generated by the | and Q coefficadithe unit vectok corresponding
to the weight errors i.ex = m [R(AW[1]), S(Aw[l]), R(AW[2]), S(Aw[2]), ---]. We want to choos&
so as to minimize the interference power given |aywh;|?> = ||Aw]||?|x/Th,|?, from the setX of available
vectorsx:

Xop = arg min [x'hy | (13)

We can also obtain an upper-bound on the achievable SIR hym@sg that the vectox that minimizes the
interference power also simultaneously achieves the maxirpossible signal power.

Intuitively, when the number of antennas increases, we @xihee minimum interference power as given in
(13) to decrease for two reasons. First, as the dimenstgralithe vector space of the weight vectors increases,
a randomly chosen vector is “more orthogonal” to the intexnfiee vector (this is explained more precisely in



Appendix 1). Second, the number of quantized weight vedimrshoose from increases exponentially with We
now quantify these factors and obtain an upper bound on tieefémence suppression capability of an array.

Without loss of generality, we assume that the interferaresgorh; is aligned with one of the coordinate axes.
Let 6, be the angle betweeh; andx and let¢, = § — 6,. Our goal is to findx such thatg, is as small as
possible. Ifx is chosen randomly and uniformly on the unit hypersphere ptobability density function of,, is
given by (see Appendix I):

cos?N=2 ¢
) = 14
f¢(¢) 22F1(%,%;%;1) ( )
where 2 F(.,.;.;.) is the Gauss hypergeometric function[6]. Consider the dative distribution function corre-
sponding to (14) given by .
Folo) = Pr(6: <9 = [ Solon)ddn (15)
From (23) we have thaky(¢) is an increasing function ol for any ¢ < [0, §]. Thus we have
2
Fy(0) 2 Fy(¢) = 22 (16)

Finally if all N, = 228V available weight vectors are assumed to be distributecbrmlyy over the surface of the
unit hyperphere, there exists at least one vegtauch thatFy,(¢,) < Niw Therefore using (16) we conclude that
at least one weight vector exists such that

b < = —
2Nw 921+2BN

17)

and the average interference power corresponding to thi®we is upper-bounded bi[||h; [|?||Aw]|[? sin? ¢,] <
0227274BN which decreases exponentially wif.

The key assumption in the above derivation is that the adaileveight vectorsc are distributed uniformly over
the hypersphere with respect to any arbitrary interferev@etor h,. This assumption is too optimistic; a more
realistic assumption is that the weight vectors are unifgrdistributed over aypercube. Intuitively there are very
few “sparse” weight vectors itk’, whereas most available vectors have significant (non}zmrefficients over a
large proportion of antenna elements. Thus for instancenterference vector that is highly sparse is difficult to
suppress. To take an extreme example, an interferencertkatas zero everywhere except a single antenna element
will be difficult to suppress. Therefore it is not clear hogttt the bound in (17) is. Also the above reasoning leads
us to expect that the average interference suppressioarpenfice will depend strongly on the fading distribution
e.g. the Rayleigh distribution is more likely to give “unated” or sparse vectors than a line-of-sight distribution
We leave a more detailed exploration of these ideas to fukumnd.

IV. CONSTRUCTIVE ALGORITHMS FOR INTERFERENCE SUPPRESSION

We have seen that the naive approach to quantizing the antemight vector, based on applying a scalar
qguantizer to each coefficient independently, does not aehige optimum interference suppression. On the other
hand, because there are a total26F" possible quantized vectors, implementing an optimal vegt@ntizer by
exhaustively searching through the set of reconstrucéeels has a computational cost that is exponential in the
number of antennas and the number of quantization bits., Maasor quantization by exhaustive search is infeasible
in practical scenarios.

We propose instead a simple, sub-optimal vector quamizascheme which is based on coordinate descent
optimization. This scheme substantially improves overria&ve method, yet has computational cost that is linear
in the number of antennas.

The sub-optimal scheme greedily quantizes the weight végtsearching through the set of reconstruction levels
for each element individually, instead of jointly as in théhaustive search algorithm. We begin by computing an
initial weight vector. This can be done in several ways, saslapplying a scalar quantizer to the optimal MVDR
weights given by Equation 6, applying a scalar quantizeh® desired channel responbg (matched filter), or
even randomly drawing a vector from the set of valid quamtiaeights. Our simulations show that initializing



with a quantized version of the optimal weights or the madicfiker yield far superior results to using a random
initialization. In most of our simulations, we used the nied filter.

Next, we search through afi>”? valid reconstruction levels of the first coefficient, whiledping the other
N — 1 coefficients fixed. The value which maximizes the output SislRhosen as the quantized value of the first
coefficient. We then proceed to quantize the second coeffidkeeping the first coefficient fixed at its quantized
value and coefficient8 through NV fixed at their initial values, by a similar search. This meth® applied to each
of the N coefficients ofw, yielding a sub-optimal, vector-quantized weight vector.

The coordinate descent quantizer has a computational €ast-@22. We note that the output of this quantizer
depends on both the method of selecting the initial vectartae order in which the coefficients are quantized.

V. SIMULATION RESULTS

In this section, we provide numerical results that verifg #inalysis of this paper, and compare the performance
of the various quantization schemes.

A. General errors in antenna weights

Figure 2(a) demonstrates the relationship between imrée power after beam-nulling and the mean square
error in the antenna weights. The plot compares the caseaewhdependent Gaussian noise is added to the real
and imaginary components of the optimal weight vector todhge where the noise is added to the magnitude and
phase, as well as comparing the Rayleigh and LOS channeifislisimulation there weré&y = 200 antennas and
K = 20 interferers. The results show that the interference leakaglirectly proportional to the total error power,
and does not depend on whether the error is modeled as adluhitthe Cartesian or polar coordinates. The channel
has very little effect on the performance.

B. Scalar quantization of antenna weights

In this section, we present numerical results of the naigalas quantization scheme. With scalar quantization,
the variance of the quantization noise growssgs~ 228 and therefore the SIR is proportional $2%5. Figure
2(b) shows the SIR (normalized by the number of antenigsas a function ofV, with the number of interferers
fixed at K = 20 and the quantizer size fixed & = 4 bits. Figure 2(c) shows the SIR (multiplied by) as a
function of K, with N = 1000 and B = 4. These plots demonstrate that the SIR is linearly propoafito N/K
for the scalar quantization method. The slight downwargelm 2(c) is due to the fact that for a fixed number of
antennas, as the dimension of the interference subspaeagas more of the desired signal lies in that subspace.
Hence, the signal power that is orthogonal to the interfegelmegins to decrease. Figure 2(d) shows the SIR as a
function of B, with N = 1000 and K = 20. The slope of the curve closely matches the predicted gaBdBffor
each quantization bit.

C. \ector quantization of antenna weights

We also simulated the coordinate descent vector quantizggantify the performance and demonstrate the gains
over scalar quantization. Figure 3(a) shows the SIR as aifumof the number of antennas, for various channels
and quantizer bit rates,witl’ = 15 interferers. The quantizer was initialized by applying alac quantizer to
the matched filter. In contrast to the simulated performasicthe scalar quantizer in Figure 2(b) where $\R
was constant, we see that for the coordinate descent veatmtiger SIRN grows approximately linearly. Thus,
the SIR grows quadratically with the number of antennasued(b) shows that the average interference power
(scaled by the number of antennas) is constant in the samedagiom. Thus, the average interference power with
vector quantization decreases linearly with This is in contrast to the scalar quantizer, where the fietence
power was constant. Since the SIR is increasing quadrgticalV and the interference is decreasing linearly, we
know that the signal strength is growing linearly. Thus, teerdinate descent method does not cause a significant
reduction in SNR.

Figure 3(c) shows the quantiti( - SIR as a function of the number of interferek§ with N = 100 antennas
and aB = 2 bit quantizer. The downward slope of this curve demonsiréitat the SIR is decreasing at a rate
faster thanl /K. Figure 3(d) shows a plot ok - SIR for the same setting, which shows that the SIR is deargasi
approximately by a factor of /K?2. Taken together, Figures 3(a) and (d) imply that for the dowmte descent
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vector quantizer, the SIR is proportional ?/K2. Recall that with scalar quantization the SIR was propagilo
to N/K. The functional dependence of SIR &hand K through the ratioN/K is corroborated by Figure 3(e),
which shows that the SIR is constant whahis varied andK is set toN/4.

The dependence of the coordinate descent method on the nofntpgantization bits is presented in Figure 3(f).
Just as in scalar quantization, the SIR grows exponeniialthe bit rate, with a gain of approximately 6 dB per
bit.

Finally, we also simulated the performance of the exhaestearch vector quantizer. Figure 3(g) shows the SIR
in dB as a function ofV, with K = 2 and one bit quantization. Figure 3(h) shows the SIR in dB agnatfon
of K, with N = 10 and B = 1 bit quantization. While the computational complexity ottkexhaustive search
method presents an obstacle to providing more extensivelaiions, it appears that the SIR (in linear units) grows
exponentially inV-and decreases exponentially/in Thus, there may still be a significant gap between this agtim
vector quantizer and the coordinate descent algorithmyevBéR grew polynomially inV/K. This potential gain
motivates future work on computationally efficient vectaragtizers that outperform coordinate descent.

D. Beamforming gain

While we have focused in this work on the effect of variousmization schemes on SIR, vector quantization
can also improve the beamforming gain. Figure 2(e) showstitenalized array gain of the scalar quantizer, as
well as the exhaustive search and coordinate descent weeantizers. In this simulation, all phases were quantized
to two levels ( or 7). Without quantization, the normalized gain would equalhe gap between vector and scalar
guantization is smaller because beamforming is more rdbustrors than interference rejection, and thus the naive
method does not incur a large penalty.

E. Effect of noise

Up to this point, we have neglected all sources of error othan quantization. However, in practice there may
be small additional noise due to various hardware impddastor thermal variations. Figure 2(f) shows the SIR
as a function of the variance of a uniform random variablé thadded to each component of the antenna weight
vector after quantization. The plot shows that while thefgpemance of the coordinate descent method degrades in
the presence of noise, it is still superior to the naive goglmntization scheme.

VI. CONCLUSION

We have shown that coefficient quantization in digital reeeimplementations can have a profound effect on
the performance of interference-limited multi-antennatsgns. In particular, quantization of beamforming weights
critically affects interference suppression performaraed must be performed carefully in order to exploit the
degrees of freedom gains from using an increased numbertefiaas. While our suboptimal greedy sequential
strategy provides large gains over the naive scalar quatitiz strategy, our analytical estimates indicate that it
might be possible to do much better. Important open problewiside refinement of the analysis to provide tight
upper and lower bounds on SIR scaling, and devising effi@daptive and non-adaptive algorithms for finding the
guantized weights that approach the performance of thenaptijuantized weights.
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APPENDIX
DISTRIBUTION OF THE ANGLE WITH RESPECT TO AN INTERFERENCE VE®R

We start with the well-known formula for the area of a surfatement of ai-dimensional unit hypersphere [7],

[8]:
dS = sin?"20,_9dfy_osin? 3 0y_3d04_s . . . sin 01d01dby (18)

wheref,_o, 04_3, ..., 01, 0y are thed — 1 angular coordinates of the hyper-spherical coordinatéesyslf we
assume (without loss of generality) that the interfereneetar is aligned with one of the coordinate axes, then
0, = 04_5 is the “angle” made by the unit vecter on the surface element above with the interference vector.
If the unit vector is assumed to be distributed uniformly bl surface of the hypersphere, then the probability
density of the angle is proportional to the area elementfyé,) o sin®~26,_,. It is more convenient for us to
work with the transformed angle, = 5 — 6., and we then have for the probability density @f:

—2 e
2 ¢:v
f¢(¢x) = 7= ( )
f_ﬂ sin?2 (2 — ¢,) dos
ogd—2
P
= 19
I sind—2 by didy (19)
Define I,,(t) = J; sin"« dz. We have the identity
1 1—n 3
I,(t) = —cost 2F1(§, T o ; COS t) (20)
where o F (., .;.;.) is the Gauss hypergeometric function. However, it is moraveaient to use the recursive
formula: 1 ot .
L= L o L) (21)
n n
We then have
Pr(jg.| < ¢) = 1—2Pr (¢ < ¢, < 7)
I(¢)
=1-— (22)
In(§)
From (21), we have,,(5) = "T‘lln_2(g), and further using (21) in (22) we have
sin" ! ¢ cos ¢ I, 2<¢>
Pr(l¢ps| < ¢) = ——F—77< + (1 — 23

2(g
We see from (23) that the cumulative probability distribaticdf) of\%\ FWN)(¢) = Pr(|¢,| < ¢) is an increasing
function of N. From this, we have 2¢)

Pr(|¢z| < ¢) > (24)

Finally we have the following lemma:
Lemma. Let F (x), F»(x) be two probability distributions (cdfs) in an intervial b] such thatF (z) < F»(z), Vz €
[a,b] and letg(z) be a non-increasing differentiable function[mb]. ThenEpg, [¢(z)] < Eg,[g(z)].



Proof. Sinceg(z) is a non-increasing differentiable function, we ha¥ér) < 0, Vz € [a,b]. Consider
b b b
Brlo(o)] = | s@dfi@) = [s0)Fi)] - [ @) Fie) ds (25)
b
=90 - [ J@R@ b

b
< g(b) - / ¢ (2)Fy(z) do = Epy [g(x)] (26)

where we used integration by parts in (25).
From the above lemma with(z) = cos? z in [0, Z] and (23) we get

EF(Nl) [sin2 95(;] = EF(Nl) [COS2 ¢:c] < EF(Ng) [sin2 95(;], VN| < Ny (27)

If we setN; = 0, this giveSEpw) [sin? 0,] > 3.



