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Abstract

Multi-element antennas offer the possibility of increasing the spatial reuse of wireless spectrum by “nulling”
out interfering signals. However, the interference suppression performance is highly sensitive to small errors in the
gains applied to the antenna elements. In this paper, we examine in detail the effect of one specific source of error
that arises from quantizing array weights. We show that a simple approach based on scalar quantization that ignores
the correlation of the quantization errors fails to fully utilize the interference suppression capability of the array:
the residual interference level does not decrease with the number of antennas. Unfortunately, the optimum approach
to computing the weights involves vector quantization overa space that grows exponentially with the number of
antennas and number of quantization bits, and is therefore computationally intractable. We propose instead a simple
suboptimal method that greedily optimizes SIR coefficient by coefficient. Simulations show that this greedy approach
provides substantial SIR gains over the naive approach, with SIR growing polynomially in the number of antennas.
We derive analytical bounds that indicate that even larger SIR gains (exponential in the number of antennas) are
potentially achievable, so that finding tractable algorithms that improve upon our suboptimal approach is an important
open problem.

I. INTRODUCTION

The use of multiple antennas offers the potential of significantly improving the performance and capacity
of interference-limited wireless communication systems,with applications including spatial multiplexing over a
point-to-point link, multipacket reception, and uncoordinated spectrum sharing among different networks. Standard
interference suppression techniques include beamformingusing the zero-forcing (ZF) or linear minimum mean-
squared error (MMSE) criterion. In modern “mostly digital”transceiver architectures, beamforming is typically
implemented digitally, using quantized weight vectors. Inthis paper, we examine the effect of such coefficient
quantization on interference suppression performance, specifically focusing on the performance of quantized versions
of a ZF receive beamformer which steers nulls in the direction of the interfering signals. Since the MMSE
beamformer tends to the ZF beamformer at high signal-to-noise ratio (SNR), we expect our results to also apply,
at least qualitatively, to the MMSE beamformer in regimes where interference, rather than noise, is the dominant
impairment.

We find that quantization of the beamforming weights can dramatically degrade interference suppression perfor-
mance if performed in naive fashion, which could severely limit our ability to exploit the large spatial multiplexing
gains that are theoretically available with multiple antennas. Specifically, while the contribution of the desired
signal to the beamformer output is highly robust to quantization error in the beamforming weights, far more precise
control of the weights is required to effectively steer nulls. Indeed, it is clear that, with probability one, perfect
nulling of even a single interferer is no longer possible. What we would still hope for, however, is that the Signal to
Interference Ratio (SIR) scales up as quickly as possible with N , the number of antennas, and degrades as slowly
as possible withK, the number of interferers.

Our main results are summarized as follows:
1) A naive strategy of coefficient-by-coefficient quantization of the ZF beamforming weights has poor perfor-

mance: the SINR scales asN/K, as it would for a spatial matched filter. That is, we obtain the combining
gains for the desired signal, but increasing the number of degrees of freedomN does not lead to any improved
scaling in the residual interference power at the output of the beamformer.



2) We provide analytical estimates that indicate that we should be able to perform much better than the naive
strategy. An upper bound implies that the SINR could potentially grow exponentially fast withN , while a
pessimistic estimate indicates that the SINR should grow atleast as fast asN2. This motivates the search for
improvements to the naive “scalar quantization” strategy.

3) We propose a suboptimal “vector quantization” strategy in which each coefficient is optimized sequentially to
maximize SINR, starting from the naive solution. This greedy sequential strategy yields substantial gains in
SINR over the naive strategy, demonstrating the polynomialgrowth of the kind predicted by the pessimistic
analytical estimates.

4) We provide extensive simulation results for various strategies. While optimal vector quantization of the
beamforming weights is computationally infeasible for large N , exhaustive search for smallN is found
to perform significantly better than the greedy sequential strategy, possibly even leading to exponential
dependence onN . Finding computationally efficient vector quantization algorithms that can approach the
performance of the optimal solution therefore remains an important open problem.

Related Work. To the best of our knowledge, this paper is the first systematic examination of the effect of
quantization of antenna weights on interference suppression. However, quantization in MIMO wireless systems has
been extensively studied in many contexts in previous work.The most notable example of this is the work on the
design of codebooks in channels with limited channel-statefeedback [1], [2], where the goal is to find transmit
beamforming vectors that maximize thedesired signal contribution at the receiver. This problem has been shown
to be related to the problem of sphere-packing in a Grassmanian manifold [3], and the geometry of vectors on the
multi-dimensional hypersphere proves to be important to understanding the codebook design problem [4]. While
the geometry of the hypersphere also provides insights intointerference suppression and gives us an analytical
upper-bound on the interference suppression levels, it turns out that the problem of finding vectorsorthogonal to
a given vector in the hypersphere is more involved than the sphere-packing problem. We briefly remark on some
open issues related to this in Section VI.

Outline: In Section II, we describe a simple interference suppression problem and show that naive scalar
quantization incurs a severe performance penalty. SectionIII contains analytical estimates of the performance
that can be achieved with vector quantization, with optimistic estimates predicting exponential gains of SIR withN
and pessimistic estimates predicting polynomial gains. InSection IV, we describe an algorithm that can significantly
improve the performance using a greedy sequential vector quantization strategy. Extensive simulation results are
provided in Section V, while Section VI contains our conclusions.

II. THE INTERFERENCE SUPPRESSION PROBLEM

We begin by considering a multi-antenna receive beamforming system, where the goal is to maximize the array
gain in the direction of a desired transmitter1. In this section, we analyze the effect of errors in the choice of antenna
weights. For clarity we focus on a simple setup where a receiver with aN element antenna array receives the desired
signal that has the (complex baseband) channel gainh0

.
=

[

h0[1], h0[2], . . . h0[N ]
]

and an interfering signal
with channel gainh1

.
=

[

h1[1], h1[2], . . . h1[N ]
]

2, where the components of the channelsh0, h1 are drawn
from iid complex Gaussian distributions i.e. Rayleigh fading. This setup can be readily generalized to multiple
interferers and to Rician or Line-of-Sight channels and we later present some simulation results to show that the
same ideas extend to more general setups. Indeed, we later present arguments that show that a Rayleigh fading
channel represents a worst-case scenario in dealing with quantized weights.

A. Problem Statement

We begin by presenting a quick review of the theory behind computations of the optimum beamforming weights.
The incoming signal at the input of the arrayy[n] is the sum of the desired signal and interference and noise:

y[n] = h0d[n] + h1d1[n] + v[n]

1A similar analysis also applies to a transmit array that seeks to minimize its interference at given locations. We focus on the receive
array in this paper for clarity.

2We will denote scalars in lower case, vectors in bold lower case, and matrices in bold upper case.



whered[n] is the desired signal,d1[n] is interfering signal, andv[n] is the white noise vector at the receiver with
varianceσ2

v). For simplicity, we shall assume that the desired and interfering signals have the same power i.e. are
drawn from Rayleigh distributions with the same variance which we set to unity without loss of generality.

Using array weightsw, ||w|| = 1, the signal at the output of the array will bewHy[n] and the resulting output
SINR is given by:

SINRout =
|wHh0|

2

|wHh1|2 + σ2
v

where(·)H denotes the complex conjugate transpose. In the absence of interference, the output signal to noise ratio
(SNR) is maximized by choosing

wopt =
h0

||h0||
, SNRopt =

||h0||
2

σ2
v

(1)

Note that when averaged over the fading channel gainh0, the SNR varies as

E
[

SNRopt

]

=
E[||h0||

2]

σ2
v

≡
N

σ2
v

(2)

In other words, the SNR increases linearly with the number ofantennasN . Physically a larger array permits higher
antenna directivities which accounts for this increase. Note that the “effective noise power”|wHv|2 ≡ σ2

v does not
increase withN .

When an interferer is present, complete interference rejection can be achieved by choosing a beamforming weight
vectorw that is the projection of the desired vectorh0 onto the subspace orthogonal to the interference vectorh1:

wopt = wprojection = h0 −
1

hH
1 h1

h1h
H
1 h0 (3)

If we let θ1
.
= cos−1

( |hH
1 h0|

||h0||||h1||
)

be the “angle” between the desired and interference channelvectors3, we can write
the SNR from the projection beamformer as

SNRopt =
||h0||

2 sin2 θ1

σ2
v

(4)

When averaged over the fading channel gainsh0, h1, we still get a linear increase in SNR withN :

E
[

SNRopt

]

=
E[||h0||

2 sin2 θ1]

σ2
v

≥
N

2σ2
v

(5)

The final inequality in (5) is based on the observation thatE
[

sin2 θ1

]

≥ 1
2 , which is derived in Equation (27) in

Appendix I.
The projection-based beamformer (3) does not take noise into account. In general, maximizing the output

SINR does not necessarily require complete interference rejection; reducing the interference to the noise level
may be sufficient. Optimizing the output SINR leads to the Minimum Variance Distortionless Response (MVDR)
beamformer [5]. If we define the noise+interference correlation matrix RN+I

.
= h1h

H
1 + σ2

νIN whereIN is the
N × N identity matrix, then the output SINR can be maximized by choosingwopt:

wopt = wMVDR =
R−1

N+Ih0

hH
0 R−1

N+Ih0

(6)

The denominator in (6) is a normalizing factor. When the interference power is much larger than the noise power,
both projection and MVDR yield virtually identical results. This is typically the case in bandwidth-limited wireless
links and we focus on this case exclusively in this paper; therefore the resulting SINR is still approximately given
by (4) and its variation withN by (5).

3Note thatθ1 is an angle inN -dimensional space, and does not correspond to a physical direction.



B. Effect of errors in weights

In practice the weights that are actually applied to the array elements may differ from the optimum desired
weight from (3) for many reasons such as errors in channel estimation, calibration errors and quantization effects.
Let ŵ be the weight applied to the array. We will assume thatŵ ≡ (wopt+∆w)

||(wopt+∆w)|| where the real and imaginary
parts (in-phase and quadrature) of each component of the weight error vector∆w are i.i.d. zero mean random
variables with variance1

2N
σ2

w.
Remark. Since any scaled version of the vectorw yields the same SINR, we constrainw to be a unit vector

i.e. ||w|| = 1 in order to eliminate this ambiguity. In practice, the weight applied to each antenna element usually
varies between fixed limits e.g.(−1, 1), and this weight is quantized to a fixed number of bits. Thus the variance
of each component of the quantization error vector∆w is also fixed. However, because of the scale invariance of
the SINR, we choose to impose the unit vector constraint for analytical convenience (instead of the fixed dynamic
range constraint). As a result, the components ofw scale as 1√

N
, and the variance of the quantization noise also

scales inversely withN since quantization error varies proportionally with the dynamic range of the elements of
w itself. In other words,E

[

||∆w||2
]

= σ2
w independent ofN .

Intuitively, the errors∆w result inŵ deviating fromwopt by an “angle”θw
.
= cos−1

(

|wH
optŵ|

)

. This deviation
will result in a reduction in the signal strength in the desired direction as well as an increase in the interference
power, sinceŵ will no longer be orthogonal the interference subspace. Thedesired power is proportional tocos θw,
and the increase in interference (leakage) is proportionalto sin θw (see Figure 1). For small anglesθw, we can use
the standard approximationssin θw ≈ θw andcos θw ≈ 1. This explains why nulls are more sensitive than peaks to
phase and amplitude errors, sincesin θ changes more rapidly thancos θ whenθ is small.

Thus taking the errors∆w into account, we can update (1) for the SNR in the absence of interference as

SNR =
|ŵHh0|

2

||w||2σ2
v

=
|wH

opth0 + ∆wHh0|
2

σ2
v

≥ SNRopt(1 − ||∆w||)2 (7)

This implies that the SNR averaged over the fading still scales asN :

E
[

SNR
]

≥ α × E
[

SNRopt

]

(8)

with at most only a constant factor lossα = E
[

(1 − ||∆w||)2
]

≥ (1 − σ2
w) due to the errors.

Now, let us consider the effect of the weight errors∆w on the zero-forcing beamformer in the presence of an
interferer. The SINR is given by

SINR =
|ŵHh0|

2

|ŵHh1|2 + ||ŵ||2σ2
v

=

∣

∣||h0|| sin θ1 + ∆wHh0

∣

∣

2

|∆wHh1|2 + (1 + ||∆w||2)σ2
v

(9)

where θ1 is defined as in (4). The numerator of (9) when averaged over the weight errors∆w and the fading
coefficientsh0, h1 is lower-bounded byN2 +σ2

w which scales linearly withN , and the averaged denominator equals
σ2

w + (1 + σ2
w)σ2

v , which is independent ofN .
Thus the ratio of average signal to interference and noise powers scales linearly withN . This seems good

considering that the SNR in the no-interferer case given by (8) also scales linearly withN . Note however that the
average interference power given by the denominator of (9) does not decrease withN even though the degrees
of freedom for interference cancellation increases; this is starkly unlike the situation without weight errors, where
a larger number of antennas permits the complete nulling of alarger number of interferers. This indicates that
there might be some suboptimality in the scaling behavior in(9). We show next that indeed, a much better scaling
behavior can be obtained by adopting a more optimal approach.



Fig. 1. The optimum beamforming vectorwopt can be viewed as a projection of the desired signal onto the subspace orthogonal to the
interference subspace. The distorted beamforming vectorŵopt can decomposed into two orthogonal components:ŵopt = ŵ

⊥
opt + ŵ

‖
opt.

ŵ
‖
opt, which is parallel towopt, represents the potential loss in beamforming gain, and is proportional tocos θ. ŵ

⊥
opt, which is orthogonal

to wopt, represents the potential leakage into the interference subspace, and is proportional tosin θ.

III. I MPROVING INTERFERENCE SUPPRESSION

We now consider the problem of computing the optimal weightsin the presence of quantization errors. Let us
represent thei’th component of vectorx by x[i], e.g. the weight applied to antenna elementi is w[i] and so on.
Let B be the number of quantization bits i.e. the I and Q componentsof each weight element is quantized to one
of 2B levels. There are thenNw = 22BN total weights available from which to choose4. Let W be the set of these
weight vectors. We can then formulate the problem of computing the optimum weight as a SINR maximization
problem:

wopt
.
= arg max

w∈W
|ŵHh0|

2

|ŵHh1|2 + ||ŵ||2σ2
v

(10)

Remark. It is not a trivial task to compare two algorithms based on their SINR performance. If one algorithm
outperforms another for every possible realization of the desired and interference channels, then it is clearly better.
However, such a definition is too stringent to be useful, and in practice, we may have to settle for comparing some
averages. At first glance, it seems as if the natural choice would be to compare the average SINR i.e.E

[

SINR
]

;
however this measure suffers from some fundamental disadvantages. First of all, it is rather unwieldy analytically.
Secondly, the average can be dominated by a small number of channel realizations where the SINR becomes very

4Note that some of these weight vectors may be scaled versionsof others, and thereforeNw is actually an upper-bound on the number
of distinct weight vectors available to choose from.



large. We, therefore choose a different measure: the ratio of average signal power to average interference power
(we neglect noise):

¯SINR =
E[|ŵHh0|

2]

E[|ŵHh1|2]
(11)

A. An approximate lower bound on achievable SIR

The problem of choosing the optimum weightw can also be considered as a problem of choosing the optimal
∆w. We have seen from (9) that the average signal power scales linearly with N in the presence of the errors
∆w. However, as we have seen, the average interference power isindependent ofN if the components of∆w

are chosen independently. We show next that if the components of ∆w are chosendependently of each other, the
interference power can be made to decrease significantly with N .

Given an interference vectorh1, our goal is to understand the term|∆wHh1|
2. Let us first consider a simpler

problem. For an interference vectorh1, suppose we simply wish to minimize|uHh1|
2, whereu takes all possible

values inU = 1√
N
{−1,+1}N (i.e. the elements ofU are binary vectors normalized to unit norm). LetZ(u)

.
= uHh1.

Note thatZ(u) ∼ CN(0, 1) for any u ∈ U since the fading coefficients ofh1 are assumed to beCN(0, 1). Note
also thatZ(u1), Z(u2) are jointly proper complex Gaussian with covariance (and normalized correlation) equal
to uH

1 u2. Let us now choose a subsetUo of U which forms an orthonormal basis inN dimensions: the Walsh-
Hadamard codes. Then{Z(u) : u ∈ Uo} areN uncorrelated, and hence independent,CN(0, 1) random variables.
The corresponding powers{|Z(u)|2,u ∈ Uo} are therefore exponential random variables with mean one.

The minimum interference power can now be upper bounded as

Pmin = min
u∈U

|Z(u)|2 ≤ min
u∈Uo

|Z(u)|2 (12)

It is easy to show that the minimum ofN i.i.d. exponential random variables of mean one is an exponential random
variable with mean1

N
. Thus, for our simplified model, the interference power scales down at least as fast as1

N
with

N .
Let us now return to our original problem. ConsiderZ(∆w) ≡ ∆wHh1. For each coefficient of the ZF weight

vector, suppose that we restrict ourselves to two options: round both I and Q coefficients up or round them both
down. Thus, if the quantization interval is∆, the corresponding coefficient of∆w is being set to−(∆−X) or X,
respectively, whereX is the distance of the unquantized coefficient from the bottom-left edge of the quantization
bin in which it falls. Thus, if we let +1 indicate rounding down a coefficient, and -1 indicate rounding up, there
are2N possible choices of∆w with this strategy, which map to the vectors inU = 1√

N
{−1,+1}N considered in

our prior simplified example. While the Walsh-Hadamard vectorsui no longer yield uncorrelated Gaussian random
variablesZ(bi) when the distribution of theX ’s are taken into account, sinceU is anN -dimensional vector space,
it is always possible to find a set of basis vectorsvi which yield uncorrelated random variablesZ(vi) and for
which (12) holds. This leads us to expect that the minimum interference power here will also fall off at least as
fast as 1

N
. We plan to continue to work on refining these arguments, and hope to present a sharper result at the

conference.

B. A geometric upper-bound on achievable SIR

Consider the2N -dimensional hypersphere generated by the I and Q coefficients of the unit vectorx corresponding
to the weight errors i.e.x

.
= 1

||∆w||
[

ℜ(∆w[1]), ℑ(∆w[1]), ℜ(∆w[2]), ℑ(∆w[2]), · · ·
]

. We want to choosex

so as to minimize the interference power given by|∆wHh1|
2 ≡ ||∆w||2|xHh1|

2, from the setX of available
vectorsx:

xopt = arg min
x∈X

|xHh1|
2 (13)

We can also obtain an upper-bound on the achievable SIR by assuming that the vectorx that minimizes the
interference power also simultaneously achieves the maximum possible signal power.

Intuitively, when the number of antennas increases, we expect the minimum interference power as given in
(13) to decrease for two reasons. First, as the dimensionality of the vector space of the weight vectors increases,
a randomly chosen vector is “more orthogonal” to the interference vector (this is explained more precisely in



Appendix I). Second, the number of quantized weight vectorsto choose from increases exponentially withN . We
now quantify these factors and obtain an upper bound on the interference suppression capability of an array.

Without loss of generality, we assume that the interferencevectorh1 is aligned with one of the coordinate axes.
Let θx be the angle betweenh1 and x and letφx

.
= π

2 − θx. Our goal is to findx such thatφx is as small as
possible. Ifx is chosen randomly and uniformly on the unit hypersphere, the probability density function ofφx is
given by (see Appendix I):

fφ(φx) =
cos2N−2 φx

2 2F1

(

1
2 , 3−2N

2 ; 3
2 ; 1

) (14)

where 2F1(., .; .; .) is the Gauss hypergeometric function[6]. Consider the cumulative distribution function corre-
sponding to (14) given by

Fφ(φ) = Pr(|φx| ≤ φ) ≡

∫ φ

−φ

fφ(φx)dφx (15)

From (23) we have thatFφ(φ) is an increasing function ofN for any φ ∈ [0, π
2 ]. Thus we have

Fφ(φ) ≥ F0(φ) ≡
2φ

π
(16)

Finally if all Nw ≡ 22BN available weight vectors are assumed to be distributed uniformly over the surface of the
unit hyperphere, there exists at least one vectorx such thatFφ(φx) ≤ 1

Nw
. Therefore using (16) we conclude that

at least one weight vectorx exists such that

φx ≤
π

2Nw

≡
π

21+2BN
(17)

and the average interference power corresponding to this vectorx is upper-bounded byE
[

||h1||
2||∆w||2 sin2 φx

]

≤
σ2

w2−2−4BN which decreases exponentially withN .
The key assumption in the above derivation is that the available weight vectorsx are distributed uniformly over

the hypersphere with respect to any arbitrary interferencevector h1. This assumption is too optimistic; a more
realistic assumption is that the weight vectors are uniformly distributed over ahypercube. Intuitively there are very
few “sparse” weight vectors inX , whereas most available vectors have significant (non-zero) coefficients over a
large proportion of antenna elements. Thus for instance an interference vector that is highly sparse is difficult to
suppress. To take an extreme example, an interference vector that is zero everywhere except a single antenna element
will be difficult to suppress. Therefore it is not clear how tight the bound in (17) is. Also the above reasoning leads
us to expect that the average interference suppression performance will depend strongly on the fading distribution
e.g. the Rayleigh distribution is more likely to give “unbalanced” or sparse vectors than a line-of-sight distribution.
We leave a more detailed exploration of these ideas to futurework.

IV. CONSTRUCTIVE ALGORITHMS FOR INTERFERENCE SUPPRESSION

We have seen that the naive approach to quantizing the antenna weight vector, based on applying a scalar
quantizer to each coefficient independently, does not achieve the optimum interference suppression. On the other
hand, because there are a total of22BN possible quantized vectors, implementing an optimal vector quantizer by
exhaustively searching through the set of reconstruction levels has a computational cost that is exponential in the
number of antennas and the number of quantization bits. Thus, vector quantization by exhaustive search is infeasible
in practical scenarios.

We propose instead a simple, sub-optimal vector quantization scheme which is based on coordinate descent
optimization. This scheme substantially improves over thenaive method, yet has computational cost that is linear
in the number of antennas.

The sub-optimal scheme greedily quantizes the weight vector by searching through the set of reconstruction levels
for each element individually, instead of jointly as in the exhaustive search algorithm. We begin by computing an
initial weight vector. This can be done in several ways, suchas applying a scalar quantizer to the optimal MVDR
weights given by Equation 6, applying a scalar quantizer to the desired channel responseh0 (matched filter), or
even randomly drawing a vector from the set of valid quantized weights. Our simulations show that initializing



with a quantized version of the optimal weights or the matched filter yield far superior results to using a random
initialization. In most of our simulations, we used the matched filter.

Next, we search through all22B valid reconstruction levels of the first coefficient, while keeping the other
N − 1 coefficients fixed. The value which maximizes the output SINRis chosen as the quantized value of the first
coefficient. We then proceed to quantize the second coefficient, keeping the first coefficient fixed at its quantized
value and coefficients3 throughN fixed at their initial values, by a similar search. This method is applied to each
of the N coefficients ofw, yielding a sub-optimal, vector-quantized weight vector.

The coordinate descent quantizer has a computational cost of N · 22B . We note that the output of this quantizer
depends on both the method of selecting the initial vector and the order in which the coefficients are quantized.

V. SIMULATION RESULTS

In this section, we provide numerical results that verify the analysis of this paper, and compare the performance
of the various quantization schemes.

A. General errors in antenna weights

Figure 2(a) demonstrates the relationship between interference power after beam-nulling and the mean square
error in the antenna weights. The plot compares the case where independent Gaussian noise is added to the real
and imaginary components of the optimal weight vector to thecase where the noise is added to the magnitude and
phase, as well as comparing the Rayleigh and LOS channels. Inthis simulation there wereN = 200 antennas and
K = 20 interferers. The results show that the interference leakage is directly proportional to the total error power,
and does not depend on whether the error is modeled as additive in the Cartesian or polar coordinates. The channel
has very little effect on the performance.

B. Scalar quantization of antenna weights

In this section, we present numerical results of the naive, scalar quantization scheme. With scalar quantization,
the variance of the quantization noise grows asσ2

w ∼ 2−2B and therefore the SIR is proportional toN
K

22B . Figure
2(b) shows the SIR (normalized by the number of antennas,N ) as a function ofN , with the number of interferers
fixed at K = 20 and the quantizer size fixed atB = 4 bits. Figure 2(c) shows the SIR (multiplied byK) as a
function of K, with N = 1000 andB = 4. These plots demonstrate that the SIR is linearly proportional to N/K
for the scalar quantization method. The slight downward slope in 2(c) is due to the fact that for a fixed number of
antennas, as the dimension of the interference subspace increases more of the desired signal lies in that subspace.
Hence, the signal power that is orthogonal to the interference begins to decrease. Figure 2(d) shows the SIR as a
function of B, with N = 1000 andK = 20. The slope of the curve closely matches the predicted gain of6dB for
each quantization bit.

C. Vector quantization of antenna weights

We also simulated the coordinate descent vector quantizer,to quantify the performance and demonstrate the gains
over scalar quantization. Figure 3(a) shows the SIR as a function of the number of antennas, for various channels
and quantizer bit rates,withK = 15 interferers. The quantizer was initialized by applying a scalar quantizer to
the matched filter. In contrast to the simulated performanceof the scalar quantizer in Figure 2(b) where SIR/N
was constant, we see that for the coordinate descent vector quantizer SIR/N grows approximately linearly. Thus,
the SIR grows quadratically with the number of antennas. Figure 3(b) shows that the average interference power
(scaled by the number of antennas) is constant in the same simulation. Thus, the average interference power with
vector quantization decreases linearly withN . This is in contrast to the scalar quantizer, where the interference
power was constant. Since the SIR is increasing quadratically in N and the interference is decreasing linearly, we
know that the signal strength is growing linearly. Thus, thecoordinate descent method does not cause a significant
reduction in SNR.

Figure 3(c) shows the quantityK · SIR as a function of the number of interferersK, with N = 100 antennas
and aB = 2 bit quantizer. The downward slope of this curve demonstrates that the SIR is decreasing at a rate
faster than1/K. Figure 3(d) shows a plot ofK2 ·SIR for the same setting, which shows that the SIR is decreasing
approximately by a factor of1/K2. Taken together, Figures 3(a) and (d) imply that for the coordinate descent
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Fig. 2. (a) Simulated interference power as a function of errors in the weight vector. (b)-(d) Simulated effect of scalarquantization on the
performance of the MVDR beamnulling scheme as a function of the number of antennasN , the number of interferersK, and the number of
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vector quantizer, the SIR is proportional toN2/K2. Recall that with scalar quantization the SIR was proportional
to N/K. The functional dependence of SIR onN andK through the ratioN/K is corroborated by Figure 3(e),
which shows that the SIR is constant whenN is varied andK is set toN/4.

The dependence of the coordinate descent method on the number of quantization bits is presented in Figure 3(f).
Just as in scalar quantization, the SIR grows exponentiallyin the bit rate, with a gain of approximately 6 dB per
bit.

Finally, we also simulated the performance of the exhaustive search vector quantizer. Figure 3(g) shows the SIR
in dB as a function ofN , with K = 2 and one bit quantization. Figure 3(h) shows the SIR in dB as a function
of K, with N = 10 and B = 1 bit quantization. While the computational complexity of the exhaustive search
method presents an obstacle to providing more extensive simulations, it appears that the SIR (in linear units) grows
exponentially inN and decreases exponentially inK. Thus, there may still be a significant gap between this optimal
vector quantizer and the coordinate descent algorithm, where SIR grew polynomially inN/K. This potential gain
motivates future work on computationally efficient vector quantizers that outperform coordinate descent.

D. Beamforming gain

While we have focused in this work on the effect of various quantization schemes on SIR, vector quantization
can also improve the beamforming gain. Figure 2(e) shows thenormalized array gain of the scalar quantizer, as
well as the exhaustive search and coordinate descent vectorquantizers. In this simulation, all phases were quantized
to two levels (0 or π). Without quantization, the normalized gain would equal1. The gap between vector and scalar
quantization is smaller because beamforming is more robustto errors than interference rejection, and thus the naive
method does not incur a large penalty.

E. Effect of noise

Up to this point, we have neglected all sources of error otherthan quantization. However, in practice there may
be small additional noise due to various hardware imperfections or thermal variations. Figure 2(f) shows the SIR
as a function of the variance of a uniform random variable that is added to each component of the antenna weight
vector after quantization. The plot shows that while the performance of the coordinate descent method degrades in
the presence of noise, it is still superior to the naive scalar quantization scheme.

VI. CONCLUSION

We have shown that coefficient quantization in digital receiver implementations can have a profound effect on
the performance of interference-limited multi-antenna systems. In particular, quantization of beamforming weights
critically affects interference suppression performance, and must be performed carefully in order to exploit the
degrees of freedom gains from using an increased number of antennas. While our suboptimal greedy sequential
strategy provides large gains over the naive scalar quantization strategy, our analytical estimates indicate that it
might be possible to do much better. Important open problemsinclude refinement of the analysis to provide tight
upper and lower bounds on SIR scaling, and devising efficientadaptive and non-adaptive algorithms for finding the
quantized weights that approach the performance of the optimal quantized weights.
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APPENDIX I
DISTRIBUTION OF THE ANGLE WITH RESPECT TO AN INTERFERENCE VECTOR

.
We start with the well-known formula for the area of a surfaceelement of ad-dimensional unit hypersphere [7],

[8]:
dS = sind−2 θd−2dθd−2 sind−3 θd−3dθd−3 . . . sin θ1dθ1dθ0 (18)

whereθd−2, θd−3, . . . , θ1, θ0 are thed − 1 angular coordinates of the hyper-spherical coordinate system. If we
assume (without loss of generality) that the interference vector is aligned with one of the coordinate axes, then
θx ≡ θd−2 is the “angle” made by the unit vectorx on the surface element above with the interference vector.
If the unit vector is assumed to be distributed uniformly on the surface of the hypersphere, then the probability
density of the angle is proportional to the area element i.e.fθ(θx) ∝ sind−2 θd−2. It is more convenient for us to
work with the transformed angleφx

.
= π

2 − θx, and we then have for the probability density ofφx:

fφ(φx) =
sind−2

(

π
2 − φx

)

∫

π

2

−π

2

sind−2
(

π
2 − φx

)

dφx

≡
cosd−2 φx

∫ π

0 sind−2 φx dφx

(19)

DefineIn(t)
.
=

∫ t

0 sinn x dx. We have the identity

In(t) ≡ − cos t 2F1

(1

2
,
1 − n

2
;
3

2
; cos2 t

)

(20)

where 2F1(., .; .; .) is the Gauss hypergeometric function. However, it is more convenient to use the recursive
formula:

In(t) ≡ −
sinn−1 t cos t

n
+

n − 1

n
In−2(t) (21)

We then have

Pr(|φx| ≤ φ) = 1 − 2Pr
(

φ < φx ≤
π

2

)

= 1 −
In(φ)

In(π
2 )

(22)

From (21), we haveIn(π
2 ) ≡ n−1

n
In−2(

π
2 ), and further using (21) in (22) we have

Pr(|φx| ≤ φ) =
sinn−1 φ cos φ

(n − 1)In−2(
π
2 )

+
(

1 −
In−2(φ)

In−2(
π
2 )

)

(23)

We see from (23) that the cumulative probability distribution (cdf) of |φx|, F (N)(φ)
.
= Pr(|φx| ≤ φ) is an increasing

function of N . From this, we have

Pr(|φx| ≤ φ) >
2φx

π
(24)

Finally we have the following lemma:
Lemma. Let F1(x), F2(x) be two probability distributions (cdfs) in an interval[a, b] such thatF1(x) ≤ F2(x), ∀x ∈
[a, b] and letg(x) be a non-increasing differentiable function in[a, b]. ThenEF1

[g(x)] ≤ EF2
[g(x)].



Proof. Sinceg(x) is a non-increasing differentiable function, we haveg′(x) ≤ 0, ∀x ∈ [a, b]. Consider

EF1
[g(x)] =

∫ b

a

g(x)dF1(x) =
[

g(x)F1(x)
]b

a
−

∫ b

a

g′(x)F1(x) dx (25)

≡ g(b) −

∫ b

a

g′(x)F1(x) dx

≤ g(b) −

∫ b

a

g′(x)F2(x) dx ≡ EF2
[g(x)] (26)

where we used integration by parts in (25).
From the above lemma withg(x) = cos2 x in [0, π

2 ] and (23) we get

EF (N1) [sin2 θx] ≡ EF (N1)[cos2 φx] < EF (N2) [sin2 θx], ∀N1 < N2 (27)

If we setN1 = 0, this givesEF (N)[sin2 θx] > 1
2 .


