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Guaranteeing Practical Convergence in Algorithms
for Sensor and Source Localization
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Abstract—This paper considers localization of a source or a
sensor from distance measurements. We argue that linear algo-
rithms proposed for this purpose are susceptible to poor noise
performance. Instead given a set of sensors/anchors of known
positions and measured distances of the source/sensor to be lo-
calized from them we propose a potentially nonconvex weighted
cost function whose global minimum estimates the location of
the source/sensor one seeks. The contribution of this paper is to
provide nontrivial ellipsoidal and polytopic regions surrounding
these sensors/anchors of known positions, such that if the object
to be localized is in this region, localization occurs by globally
exponentially convergent gradient descent in the noise free case.
Exponential convergence in the noise free case represents prac-
tical convergence as it ensures graceful performance degradation
in the presence of noise. These results guide the deployment of
sensors/anchors so that small subsets can be made responsible for
practical localization in geographical areas determined by our
approach.

Index Terms—Global convergence, gradient descent, localiza-
tion, optimization, sensors.

I. INTRODUCTION

O VER the last few years the problem of source/sensor lo-
calization has assumed increasing significance (see [1]

for application scope). Specifically source localization refers to
a set of sensors estimating the precise location of a source using
information related to their relative position to the source. In
sensor localization a sensor estimates its own position using
similar information relative to several nodes of known posi-
tions called anchors. This information can be distance, bearing,
power level (indirectly related to distance), and time difference
of arrival (TDOA). In this paper, we will focus on distances only.
In abstract terms, our goal is the following. Given known 2-D
or 3-D vectors ( and in 2-D and 3-D,
respectively) and an unknown vector , estimate the value of
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, from the measured distances . Here, as else-
where in this paper, unless otherwise noted, all vector norms are
2-norms. In the source localization problem, represents the
position of the unknown source, and the the positions of the
sensors seeking to estimate its location. In the sensor localiza-
tion problem, the are the positions of the anchors, and the
position of the sensor estimating its own position.

We are particularly interested in issues of anchor/sensor
placement. For reasons to be explained later, we believe that
it is important to deploy anchors/sensors in a way so that
small subsets can be responsible for localization within easily
determined geographical regions. To aide such deployment,
we wish to characterize regions surrounding small groups of
anchors/sensors such that sensors/sources lying in these regions
can be localized in a practical and effective way by using their
distances from the members of these groups. The definition and
motivation of “practical localization” is provided in the sequel.

We note that distances can be estimated through various
means. For example if a source emits a signal, the signal inten-
sity and the characteristics of the medium provides a distance
estimate. In this case with the source signal strength, and
the power loss coefficient, the received signal strength (RSS) at
a distance from the source is given by

(1.1)

Thus, , , and provide . Alternatively, a sensor may transmit
signals of its own, and estimate the distance by measuring the
time it takes for this signal reflected off the target to return. An-
other means of estimating distances is when a group of sensors
collaboratively use TDOA information.

In 2-D, localization from distance measurements generically
requires that distances from of at least three noncollinearly
situated be available. To be precise, with just two distances,
the position can be determined to within a binary ambiguity.
Occasionally, a priori information may be available which will
resolve that ambiguity. Otherwise, a third distance is needed.
In three dimensions, one generically needs at least four non-
coplanar .

Prior work on anchor deployment has mostly concerned
placing anchors in a way so that every sensor can measure its
distance from a sufficient number of anchors [2], [3]. Indeed, as
explained in Section II if the uniquely specify , can be
estimated using linear algorithms [4], [5]. However, in practice,
as also explained in Section II, such a linear algorithm with
certain geometries may deliver highly inaccurate estimates with
noisy measurements of the distances, even when the noise is
small.
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On the other hand, several papers adopt a nonlinear estima-
tion approach [6]–[10]. Many of these directly work with (1.1),
with known and . Thus, rather than assuming that the are
directly available, they work with the RSS at several sensors and
choose , to be the that minimizes

(1.2)

In (1.2) there are sensors, the th located at , and is the
RSS at the th sensor. It should be noted that unless one makes
the unrealistic assumption that the noise perturbing the RSS is
Gaussian, (1.2) does not provide the maximum-likelihood (ML)
estimate of . A more realistic assumption on the noise per-
turbing is that it is log normal, from which an ML-algorithm
can be developed.

Cost functions such as (1.2) and indeed the ML-cost function,
are inevitably nonconvex, and their minimization manifested
with locally attractive false optima. This is true, for example, for
[7] and [8] which conduct searches in two dimensions that, as
noted in [9], are sensitive to spurious stationary points. While
it is easy to detect convergence of search procedures to false
minima, one would have to reinitialize the search process, po-
tentially multiple times, wasting precious power, and impairing
time critical localization.

As partial amelioration, [9] provides search alternatives in-
volving the so-called Projection on Convex Sets (POCS) ap-
proach also in two dimensions, with . It has however, the
unique solution of in the noise free case if and only if is
in the convex hull of the . Convergence fails if lies outside
the convex hull.

As an extension [10] proposes the so-called hyperbolic
POCS, that does sometimes converge even if is outside the
convex hull of the . However, no characterization of condi-
tions for convergence is given. This is also true for the hybrid
of the hyperbolic and circular POCS, also advocated in [10].

A. The Approach

The foregoing indicates that sensor/anchor placement that
guarantee availability of sufficient numbers of distance mea-
surements will not suffice for practical convergence. One must
also take into account the convergence behavior of any nonlinear
algorithm one employs. In particular, to avoid repeated reini-
tializations that sap energy and induce delays, it is important to
characterize regions surrounding small numbers of sensors/an-
chors such that if a source/sensor lies in them, the resulting cost
function can be minimized using a gradient descent law that is
globally exponentially convergent in the noise free case. We as-
sert that such a characterization facilitates practical localization
in three respects.

First, there are several results in the nonlinear stability
literature (e.g., [13, Ch. 5]) that show that global exponential
convergence in the noise free case guarantees graceful per-
formance degradation in the presence of noise. These include
results where convergence in distribution, [12], with variance
increasing with increasing noise variance is proven. Second,

assigning just a small number of sensors/anchors the respon-
sibility of localizing a given region also has practical benefits:
Collaboration involving large numbers of sensors strains the
systems resources both in terms of computational and commu-
nication costs. Third, such regions remove the need for repeated
initializations which deplete resources and are inimical to time
critical localization. Characterization of such regions for cost
functions such as (1.2), which in any case does not lead to a
ML estimate, is difficult as the corresponding gradient descent
update kernel is rational for integer and irrational in general.
The corresponding cost function for ML estimation under a
more realistic log normal noise assumption is even more prob-
lematic, due to the presence of logarithms in the update kernel.
Consequently, any benefits accruing from obtaining an ML
estimate are outweighed by the lack of guaranteed convergence.

Instead our starting point is that some how distance measure-
ments have been obtained without reference to the underlying
signal model except possibly, as in [10], in its use in obtaining
distance estimates. Localization is accomplished by obtaining

as the minimizing the cost function defined below for cer-
tain designer selected weights

(1.3)

In the cost function (1.3), each addend term
, for , penalizes the

difference between the calculated distance of to the
source/sensor position estimate and the measured distance
of to . The coefficients are weighting
terms that can be chosen based on the any additional a priori
information that maybe available. For example, if it is known
that certain estimates are more reliable than others, then one
may choose the corresponding to be larger. On the other
hand, see Section IV, these weight selections may also facilitate
practical convergence in the sense adopted in this paper.

Of course, other indexes can be contemplated. For example
one could work with , rather than the difference
of the squares, and one could work with the th power of
the difference, rather than the second power. Working with the
difference , rather than the difference of the squares
would be much harder to treat by the methods of this paper, as
the derivative of the index is more awkward analytically. On the
other hand, working with a power rather than 2 may be a
more tractable extension.

Section II provides more background and examples showing
the non-convexity of (1.3). In Section III, given and ,
we characterize a nontrivial ellipsoidal set, members of which
are guaranteed to be exponentially localized through the gra-
dient descent minimization of (1.3) in the noise free case. In
Section IV, given , we quantify a nontrivial polytopic set for
which there exist such that members of this set can be
similarly localized. Section V demonstrates the performance of
gradient descent minimization under noisy distance measure-
ments. It is after all an important aim of this paper to present
an algorithm initially derived to cope with noiseless measure-
ments, but able to cope with noisy ones in a graceful manner.
Section VI is the conclusion.
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II. BACKGROUND AND PRELIMINARIES

In this section, we discuss linear algorithms and examples
demonstrating the nonconvexity of (1.3).

A. Linear Algorithms

We discuss now the practical ramifications of linear localiza-
tion algorithms. Consider three noncollinear in 2-D and equa-
tions

(2.1)

Subtracting the first equation from the remaining two one ob-
tains

(2.2)

For noncollinear , , i.e.,
can be solved uniquely. But, the solution is invariant if for

any the are replaced by , suggesting and verified
by example in [11], that such linear algorithms may have poor
noise performance.

Indeed consider in two dimensions , ,
and . Its distances

from the are , , and .
Now suppose the measured distances from , and are
35, 42, and 43, respectively. These estimated distances are in-
consistent in that no single can simultaneously meet these dis-
tance constraints. The linear algorithm provides an estimate of

that is , i.e., relatively small errors in
distance measurements translate to very substantial localization
error. On the other hand, the gradient descent optimization of
(1.3), using , and the algorithm in (2.4) below, initialized
with the estimate provided by the linear algorithm, converges to

a point that is much closer to .

B. Preliminaries of (1.3)

Our standing assumption below ensures that if and
only if .

Assumption 2.1: In two dimensions, and the ,
, are noncollinear. In three dimensions, , and

they are noncoplanar.
As an initial point we will seek to find conditions under which

(2.3)
The fact that guarantees that is triv-

ially seen by noting that by definition for all .
Examples presented in this section show that in fact the reverse
implication does not always hold.

Consider the iterative gradient descent algorithm

(2.4)
where , for , denotes the estimate of at the

th iteration, and is the initial estimate to be chosen. Under

Fig. 1. (a) False unstable stationary point at x . (b) False stable stationary point
at y.

(2.3), it is well known that given an arbitrary constant ,
there exists dependent on such that for all , the
algorithm (2.4) is globally uniformly asymptotically convergent
to for every . As a matter of fact in keeping
with our goal of ensuring practical localization, the conditions
we obtain are in fact stronger, in that they guarantee exponential
rather than just the uniform asymptotic convergence guaranteed
by (2.3).

We provide two examples where (2.3) fails. The first leads to
a situation where the resulting false stationary point is locally
unstable.

Example 2.1: Thus, consider the 2-D case where ,
, , , and

depicted in Fig. 1(a). In this case, and .
Observe in this case, with the first element of

is given by

just as the second element is provided by

The underlying symmetry of the two expressions ensures that
they are simultaneously zero only if

and must obey:

Thus the only two stationary points are and .
In (2.4) equals

For sufficiently small , the first two terms dominate. Thus,
if , and is in the vicinity of the origin,

, exhibiting the local instability of . In practical
terms, as is well known (see, e.g., [13, Ch. 2]), the local insta-
bility of this stationary point will make it unattainable in that tra-
jectories will rarely stick to it. Nonetheless this stationary point
is inconsistent with the requirements of global exponential con-
vergence.
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On the other hand, there are examples, e.g., Example 2.2
below where the spurious stationary points are locally stable.
This occurs, [14] if the Hessian

is positive definite at such a stationary point.
Example 2.2: Choose , , ,

, and the true depicted in Fig. 1(b). In this
case and . By direct verification it can be
seen that is a spurious stationary point. At this point

which is positive definite. Thus, is in fact a local
minimum.

It is thus important to consider conditions under which (2.3)
holds.

III. GUARANTEED CONVERGENCE FOR GIVEN WEIGHTS

The last section demonstrates that cost functions of the form
of (1.3) may well have local minima. In this section, we provide
a sufficient condition under which (2.3) holds for fixed .
There are various equivalent statements of the sufficient condi-
tion. One (see Theorem 3.3) is that lies in a certain ellipsoid
(or ellipse in two dimensions).

The sufficient condition provided here in fact has broader im-
plications. Not only does it guarantee convergence of gradient
descent minimization, but in fact induces exponentially fast con-
vergence.

First some notation: We define the -vector

(3.1)

the or matrix in 2-D and 3-D, respectively,

(3.2)

the 3 1 or 4 1 vector in 2-D and 3-D, respectively,

(3.3)

and as the convex hull of . We
prove an initial result.

Lemma 3.1: Consider in 2-D or 3-D with Assumption 2.1
holding. Then for every there exist scalar obeying

(3.4)

for which

(3.5)

Proof: Observe because of (3.2)–(3.5)

(3.6)

where

(3.7)

Thus, we need only show that

(3.8)

If the contrary were true then, with a scalar there exists
for which

i.e., for all

Further . This is certainly true when . It is also true
when , as . Then in 2-D, the are collinear and in
3-D coplanar, violating Assumption 2.1.

If for all , then . Further, for
in 2-D and in 3-D, the that obey (3.4), (3.5) are

in general non-unique. We now develop a condition (contained
in Lemma 3.2 below) involving and to ensure (2.3).

Define

and (3.9)

Then (2.3) holds if and only if

(3.10)

Further because of (3.4) and (3.5)

(3.11)

With

(3.12)

and (3.13)

as distances are invariant under a coordinate translation

(3.14)

Because of (3.11), and (3.4)

(3.15)

Define

(3.16)
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and observe from (3.14) and (3.15) that

(3.17)

Then we provide an intermediate result that concerns a suffi-
cient condition on for assuring (2.3).

Lemma 3.2: Consider , with Assumption 2.1
in place. Suppose , obeys (3.4) and (3.5),

, is as in (3.9) and (3.13), and is defined through
(3.1), (3.12), and (3.16). Suppose also that

(3.18)

Then, we have the following:
A) there exists , such that for all ,

(3.19)

B) Condition (2.3) holds.
Proof: Because of (3.17), A) will prove B). In more detail,

suppose . Then, , i.e.,
. Then, (3.19) implies .

Observe now that Assumption 2.1 implies that there exists a
such that for all , and all

...

as otherwise for every , one can choose a unit for which
are all within of each other, violating Assumption 2.1.

Thus, for all and

Then A) follows directly from (3.18).
The Lemma provides only a sufficient condition for (2.3).

Even if (3.18) is violated, (2.3) will hold unless some is in
the null space of which itself depends on . Yet,
we show below that the condition of the Lemma does quantify
a nontrivial domain where (2.3) holds. Second, as we show in
Theorem 3.1 under this condition not only does convergence
occur but it does so at an exponential rate.

Theorem 3.1: Consider the algorithm update (2.4) and the
various quantities defined in Lemma 3.2. Suppose (3.18) holds.
Then, for every , there exists a such that
converges exponentially to zero whenever

(3.20)

and

(3.21)

Proof: Define

Then, because of (3.17), with

(2.4) becomes

(3.22)

Thus

(3.23)

Because of A) of Lemma 3.2

Also as is a polynomial function of , for
every , there exists a such that

where for matrices denote the induced 2-norm, whenever
. Choose

(3.24)

Then if , from (3.23)

(3.25)

where because of (3.24)

Thus

and because of (3.25) exponential convergence obtains.
Observe from (3.16) that depends only on the and .

Thus, our next goal is to characterize conditions on and , for
which (3.18) holds. To this end, we first present an intermediate
lemma.

Lemma 3.3: Consider two vectors . Then

(3.26)

if and only if

(3.27)

Proof: First, we assert that the characteristic polynomial of
i.e., is given by

(3.28)

To see this observe that as has rank 2 for suitable ,
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It is well known [15, App. 7] that

Also from [15, App. 7]

Then (3.28) holds because

From (3.28), it follows that eigenvalues of
are at zero, and the remaining two are at .
Thus, the smallest eigenvalue of is

, whence the result.
Lemmas 3.3 and 3.2 and (3.4) help characterize a region

where (2.3) holds in terms of the .
Theorem 3.2: Consider in 2-D or 3-D, , obeying Assump-

tion 2.1, , as in (3.12), defined through (3.1), (3.12),
(3.16) and any and obeying (3.7), (3.4), and (3.5). Then
(3.18) holds if and only if

(3.29)

Further (2.3) holds if (3.29) is true.
Proof: Observe that (3.18) is true if and only if

Then Lemma 3.3 proves that (3.29) is necessary and suf-
ficient for (3.18) to hold. [One must use the fact that

by (3.4).] Then Lemma 3.2 proves
the result.

Consider now the special case of unity weights, i.e., ,
and . Then we argue that is a proper
subset of the region characterized by Theorem 3.2. Indeed if

then in (3.4) and (3.5) , and

Thus as

Recalling that in 2-D and 3-D, it suffices to have and
, respectively, for given satisfying Assumption 2.1,

the set characterized by Theorem 3.2 can be chosen to be sig-
nificantly larger than their convex hull. This means that in the
sensor localization problem, just a few anchors will achieve sub-
stantial geographical coverage, just as in source localization just
a few sensors will achieve a large coverage. Of course, there is
a benefit to having a large number of sensors as more data can
be used. This must be balanced against the fact that when sen-
sors collaboratively localize in a decentralized fashion, larger
numbers increase the communications cost in effecting that col-
laboration. Further larger number of sensors also often increase
the number of false minima, defeating a basic premise of prac-
tical convergence.

Theorem 3.2 characterizes the set for which (3.18) holds in
terms of , but not directly in terms of . Of course, the
themselves have a relationship to . The next theorem exploits
this relationship to characterize this set directly in terms of ,
and in fact shows that the set of satisfying (3.4), (3.5) and
(3.29) is an ellipsoid (an ellipse in two dimension).

Theorem 3.3: For every , and , obeying Assumption
2.1, the set of for which scalar satisfying (3.4), (3.5), and
(3.29) exist, is a nonempty ellipsoid, determined entirely by
and .

Proof: Note, (3.29) holds for some choice of if and
only if it holds with any , for . Thus, without loss of
generality, we may assume the are such that .
Then, satisfies (3.4) and (3.29). Thus, the set of is
nonempty.

Recall (3.4) and (3.5) combine to give (3.6) and that Assump-
tion 2.1 ensures (3.8).

Consider then for unitary matrices and , and positive-def-
inite real diagonal , the singular value decomposition (SVD)
of , i.e.,

Here, in 2-D, , , and are 3 3, , and 3 3,
respectively. In 3-D, , , and are 4 4, , and 4

4, respectively. Then, (3.6) becomes:

Consequently with an arbitrary as a -vector in 2-D,
and as a -vector in 3-D, is completely characterized
by

Thus, with the nonsingular matrix

and for arbitrary as above, satisfying (3.4) and (3.5) is com-
pletely characterized by

(3.30)

where the nonsingular matrices and are determined entirely
by . Thus, with a , positive definite symmetric matrix
given by

i.e., determined by , and the , (3.29) becomes

(3.31)

Partition as
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where in 2-D and 3-D, is 3 3 and 4 4, respectively.
Observe as the Schur’s complement obeys

(3.32)

Now consider the minimization of

with respect to . Observe the minimizing must obey

i.e.,

leading to

Thus, (3.31) becomes

Thus, the set of is an ellipsoid. The matrix is
entirely defined by , i.e., the , and the matrix is defined
using the and . Hence, since the set of is nonempty it is
an ellipsoid determined entirely by and .

IV. CHOOSING THE WEIGHTS

In the previous section, we took the as given, and charac-
terized the and for which (2.3) holds. Now the are effec-
tively user-chosen parameters. One way of choosing them is to
use a priori knowledge of the type described in the introduction.
However, more in keeping with our objectives of sensor/anchor
placement for practical convergence, in this section we quantify
the set of for which there exists a set of so that (2.3) holds.
The first question we address is the following. By changing the

, can one alter false stationary points should they exist? An
affirmative answer to this question permits one to detect conver-
gence to a false stationary point by changing the by a non-
trivial amount. The Theorem below shows that barring a highly
non-generic situation, the answer is indeed yes. This nongeneric
situation arises when one of the has exactly the same distance
from each of the other as does . In this case is a false
stationary point. Example 2.1 exemplifies this situation.

Theorem 4.1: Consider distinct , obeying Assumption 2.1.
Suppose for some and all nonnegative ,

(4.1)

Then, there exists , , such that for
all and , . Further, .

Proof: Since (4.1) holds for the same and all , for
each either

(4.2)

or

(4.3)

Since Assumption 2.1 ensures that (4.2) cannot hold for
all . Thus, for some (4.3) holds. Since the are distinct
(4.3) holds for only one element of .

Since generically the choice of affects the location and ex-
istence of false stationary points, we now characterize condi-
tions under which exist for the sufficiency condition (3.18)
to hold thereby guaranteeing practical convergence for the al-
gorithm. A related question is: Given the existence of such a set
of , how is one to select them? To understand the underlying
intuition on this last question, suppose is much closer to
than the other . Intuition suggests that one should emphasize

more than the other , by choosing to be relatively larger.
This is not just because the distance estimates at a closer loca-
tion will be more reliable. Rather it is inherent in the underlying
geometry of the problem. For example, in an extreme case, if a

, then this measurement alone suffices for localization,
i.e., the other weights can in the limit be selected as zero. The
results of this section should be viewed in this context. We first
present the following theorem that characterizes regions in ques-
tion in terms of the .

Theorem 4.2: Under the hypotheses of Theorem 3.2, there
exist for which (3.18) holds if and only if

(4.4)

Further under (4.4)

(4.5)

always guarantees (3.18).
Proof: First observe that should (4.4) hold then under (4.5),

Thus, from Theorem 3.2, (3.18) holds. Further, from the
Cauchy–Schwarz inequality

Thus, the violation of (4.4) implies the violation of (3.29) and
hence (3.18).

Observe (4.5) in particular is in accord with the intuition we
have foreshadowed. In particular, if is very close to then
there exists at least one choice of the , such that has a much
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Fig. 2. Illustration of the polytope suggested by Theorem 4.2.

larger magnitude than the remaining . For such a choice, (4.5)
forces to be much larger than the remaining .

Nonetheless, this result is in terms of and thus only in-
directly characterizes the spread of the geographical area that
guarantees (3.18). Theorem 4.3 below provides a direct charac-
terization.

Theorem 4.3: With , obeying Assumption 2.1, the largest
set of for each member of which one can find a choice of
nonnegative that guarantee (3.18), has the following proper-
ties:

a) it is a convex polytope’
b) it has as a proper subset;
c) it can be quantified by a linear program that is entirely

determined by the .
Proof: Clearly, this set of is polytopic as it satisfies (4.4)

and (3.4). Convexity is easily verified. Thus, because of (3.5),
it is also polytopic in . Further as under (3.4), for all

guarantees (4.4), is a proper subset of this
polytope. To prove c), observe from the proof of Theorem 3.3,
for a given the set of that satisfy (3.4) and (3.5) is given
by (3.30), with and determined entirely from the and
a completely free vector. Thus, the set we seek is characterized
by that obey, under (3.3),

(4.6)

where denotes the vector 1-norm, which of course can be
obtained by solving a linear program determined entirely from
the .

The fact that a linear program can determine this polytope
is of course attractive from a computational view point. While
this polytope contains , it is in fact much larger
than just . Indeed consider the 2-D example
depicted in Fig. 2 where 1, 2, and 3 represent the locations.
Choose . Then satisfying (3.4) and (4.4) are in the
interval (4,5). Here [2,3] is a closed subinterval of (4,5), and the
lengths of the segments joining 4 and 2, 3 and 5, and 2 and 3
are all equal. By similarly extending [1,3] and [1,2], one could
come up with a hexagon 6, 7, 4, 8, 9, 5 that defines the desired
polytope.

Note also that though in this set (4.5) provides a choice of the
, these are not the only choice one can make. The more one

enters the interior of this polygon, the more the available choices
of , and indeed the larger the region where a common set of

guarantees (2.3). This in particular has implications to the
positioning of the . Thus, with a potentially rough estimate
of the position of a source, groups of sensors can collaborate
to determine whether they can settle upon a which ensures

(2.3). This provides guidance on how to deploy fewer sensors
to achieve greater coverage.

Similar conclusions will follow for two-dimensional exam-
ples with , and for three-dimensional examples.

At the same time it should be noted that when the source is
located near the boundaries of these polytopes, not only is the
choice of available limited, but the convergence becomes less
robust, and performance is degraded. This performance degra-
dation also occurs when the source is close to the boundaries of
the ellipses characterized in the previous section. Thus, while
the polytopes and ellipses characterized in this paper serve as
theoretical benchmarks, in practical terms the regions for prac-
tical convergence should have sufficient cushions.

V. SIMULATIONS

Section II-A already contains a simulation example in ,
where a noisy set of measurements led to a vastly inaccurate
estimate using a linear algorithm, but produced much improved
localization using (2.4). In this section we provide two sets of
simulation results. In both cases we consider a signal model
based on the RSS distance measurement mechanism described
by (1.1) that is affected by a log-normal shadowing term .
Assuming that other measurement noises in the RSS mechanism
are insignificant in comparison to the log-normal shadowing,
the shadowing effect can be included in the signal model (2.4)
as follows:

(5.1)

where dB is a zero-mean Gaussian noise, i.e.,
dB . The model (5.1) is often expressed, con-

sidering all signal measurements in decibels, as

dB dB (5.2)

where dB , dB . dB
.

The first case considers comparison between our algorithm
and the ML estimate. The second set provides a comparison
with the POCS algorithms of [9] and [10]. Given our under-
lying motivation of sensor/anchor placement in a manner that
a small number of sensors/anchors are responsible for practical
localization in the regions determined in the previous sections,
in both cases we consider a small number of well-placed sen-
sors/anchors.

It should be emphasized that the use of the RSS model is
purely for illustration purposes. Our algorithm does not require
such a model but simply assumes that distances have somehow
been acquired. As such, similar to [10], we assume here that,
each single distance measurement/estimate corresponding to
the sensor-source distance above is obtained using maximum
likelihood estimation as

(5.3)

In the simulations, the values of the source signal strength and
the power loss coefficient are taken as dB 30 dB and either

or .
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Fig. 3. Example of poor performance of ML localization: y source location
and y its estimate.

A. Comparison With ML Estimation

It is readily seen that the ML-estimate of the source position
can be obtained by minimizing the following cost function:

(5.4)

In this section, we compare the gradient descent minimiza-
tion of (5.4) with that of (1.3). We choose , four sensors at

, , , and , and a source located at
. Our goal is to illustrate the sensitivity of the ML-algo-

rithm to the presence of false minima. In this example, (5.4) has
a local minimum in the vicinity of . Thus, in the first
example depicted in Fig. 3, we choose 50 randomly selected ini-
tial conditions lying in the square . Specifically
for each value of , we obtained the mean square
localization error by averaging over each of these 50 initial con-
ditions over 100 runs per initial condition. Each individual run
uses a fixed value of noise, and has . For the algorithm
of this paper, . One observes that while the proposed al-
gorithm performs well the performance of the ML algorithm is
poor. An interesting fact is that for large values of , ML local-
ization actually improves. This is so because for large noise the
probability that the estimates are outside the basin of attraction
of the false minimum is higher.

The second example, depicted in Fig. 4, uses precisely the
same parameters as above but with gradient descent randomly
initialized from the square . Observe
now the ML-based estimation performs much better than previ-
ously. Nonetheless, the performance of the proposed algorithm
comparable even though it is, is outperformed at high noise vari-
ances. The fact that the ML-based algorithm is outperformed
at small values of can be attributed to the fact that in this
non-Gaussian noise setting the ML estimate is not the MMSE
estimate.

Fig. 4. Example of good performance of ML localization.

Fig. 5. Ellipse defined in Theorem 3.3 for the four sensors shown is plotted in
red, with out-of-hull sources and random initial conditions.

B. Relative Performance With POCS

We consider settings where the , A, and the sensor loca-
tions are identical to those in the previous section. The goal is
to compare the performance of our algorithm with the circular
POCS algorithm of [9] and the circular/hyperbolic hybrid POCS
algorithm of [10].

Two sets of randomly selected pairs of source locations and
initial conditions are used. Each comprises 500 pairs and is de-
picted in Figs. 5 and 6. In Fig. 5 depicting the first set, the
random sources are outside the convex hull of the sensors but in-
side the corresponding ellipse defined in Theorem 3.3, depicted
as the red dotted line contour. Fig. 6 depicts the second set where
the sources are all inside the convex hull of the sensors. In both
cases the red crosses are the sources and the blue circles are the
initial conditions.
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Fig. 6. Ellipse defined in Theorem 3.3 for the four sensors shown is plotted in
red, with sources inside the convex hull and random initial conditions.

Fig. 7. Comparison with the POCS algorithms.

Observe that the ellipse characterized by Theorem 3.3 is
much larger than the convex hull of the sensors.

Fig. 7 illustrates the square of the estimation error averaged
over 1000 runs, with each run corresponding to one pair of the
source location and initial condition from the two sets described
above, as a function of the standard deviation of the shad-
owing noise. The measurement set generated for each particular
run is kept the same for all the 1000 steps of this particular run.

The algorithm parameters used in these simulations are as
follows: For the algorithm (2.4), . For the circular
POCS (according to the notation in [9]), for
and for . The circular/hyperbolic hy-
brid POCS is implemented as 500 steps of hyperbolic POCS fol-
lowed by 500 steps of circular POCS. For the hyperbolic POCS
part (according to the notation in [10]), , for

and for . For the circular

Fig. 8. Average estimation error versus standard deviation of the shadowing
noise, with out-of-hull sources.

Fig. 9. Average estimation error versus standard deviation of the shadowing
noise, with in-hull sources.

POCS part (again according to the notation in [9]), for
and for .

Observe that even though the area of the complement of the
convex hull inside the ellipse is larger than that of the convex
hull, equal numbers of source locations have been selected from
each set. The performance of the proposed algorithm is better
than that of circular and hybrid POCS until about ,
and the situation reverses after that. A similar reversal was noted
for , where the point of reversal was roughly 6/4.

To get a better insight into the relative performance with
sources located inside and outside the convex hull of the
sensors, consider Figs. 8 and 9, that respectively depict the
relative performance in these two cases. While for the out
of hull case the relative performance mirrors that above, in
the inside the hull case the POCS algorithms outperform the
proposed algorithm earlier. This however, buttresses the thesis
of this paper that this algorithm is desirable when convergence
of competing algorithms is in doubt, particularly as the area
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Fig. 10. Average estimation error versus standard deviation of the shadowing
noise, with continuous source emission, and in-hull sources.

inside the convex hull is much smaller than that outside it, but
inside the ellipse.

The foregoing assumed that only one distance measurement
is acquired in any single localization setting. However, when
the source emission is continuous, a new distance estimate can
be acquired at each iteration of the cognizant algorithms. The
relative in-hull performance is depicted in Fig. 10, with .
It is seen that the proposed algorithm outperforms its POCS
counterparts for a longer interval of .

VI. CONCLUSION

We have studied conditions under which a localization algo-
rithm involves a globally exponentially convergent gradient de-
scent minimization problem. In particular given a set of nodes
with known positions (e.g., sensors), this algorithm seeks to
localize an object (e.g., a source) whose distances from these
nodes are available. Given a set of such sensors and a set of
weights we characterize a nontrivial ellipsoidal geographic re-
gion surrounding these sensors such that a source lying in this
region can be localized through a minimization described above.
We also characterize a polytopic region for which there exist
weights that permit similar localization. These characterizations
provide guidance for placing sensors/anchors to achieve a de-
sired level of geographical coverage.

Even though the exponential convergence in the noise free
case demonstrated by us, guarantees graceful performance
degradation in the presence of noise, an explicit convergence
analysis in the noisy case represents a useful line of future
research.
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