
ERROR CORRECTION SCHEME FOR UNCOMPRESSED HD VIDEO OVER WIRELESS

M. Manohara, R. Mudumbai, J. Gibson and U. Madhow
Department of Electrical & Computer Engineering
University of California Santa Barbara CA 93106

ABSTRACT

Digital transmission of uncompressed high-definition video
is challenging because of its high data rate and its extreme
sensitivity to bit errors. In this paper we propose a simple
error correction scheme to reduce the bit error effects in the
video at the receiver end of a wireless channel. Our scheme
uses the large amount of spatial redundancy already present
in uncompressed HD video data to provide an extra layer of
protection in addition to that provided by channel coding.
Thus, our method requires no change to the video signal
being transmitted and is compatible with any existing
solution for HD video transmission. Using simulations over
a range of byte error rates, we show that our scheme
effectively reduces the number of visible artifacts because
of uncorrected channel errors, and provides approximately 7
dB improvement in peak signal to noise ratio.

Index Terms - Uncompressed HD video, Wireless
HDTV, Byte Error Rate

1. INTRODUCTION

We consider the problem of transmitting an uncompressed
high definition (HD) video stream over a wireless
connection. This problem is motivated by the application
scenario illustrated in Figure 1, where a HD video source
such as a Blu-ray disc is decrypted and decoded in a device
that then transmits the uncompressed video stream
wirelessly to a HD display. This is attractive because it
offers a way to minimize wiring in a home theater setting
and also provides a single universal and standard interface
to any HD video display, thus simplifying installation of
new devices [1].

HDTV (High Definition Television) has become
popular because it has higher resolution than traditional
television systems and an aspect ratio of 16:9 influenced by
widescreen cinema. Presently, the data rate of
uncompressed HD video can be as high as 3.0 Gbps
(1080p60, RGB444 pixel format at 8 bits per pixel). In the
future, the data rate is expected to rise with increases in
resolution and color depth.

Since HD video sources require such large data
rates, it may seem reasonable to compress the video stream
before transmitting. However, compression introduces

delay, reduces video quality and increases complexity at the
transmitter (video source) and receiver (HDTV). Also, the
video display will have to support multiple codecs to
maintain inter-operability with the various video sources.
Furthermore, the HDMI connector interface for HD video
sources and displays supports uncompressed HD
transmission. Motivation to transmit uncompressed HD
video and more information on disadvantages related to
compression can be found in [2-5].

Random bit errors (especially in the most
significant bits of a pixel) in an uncompressed HD frame are
typically visible to the naked eye as “sparkles.” Given the
high user expectations for HDTV, it is critical that decoding
failures in the digital communication scheme used to convey
these bits be masked from the user. This is especially
important in applications where retransmission-based error
recovery is not possible or desirable (e.g., when streaming
to multiple screens). In this paper, we examine whether we
can use the large amounts of redundancy in the
uncompressed video to obtain low-complexity error
resilience techniques to complement the error correction
provided by channel coding. For the example system
considered, the proposed scheme reduces the number of
errors in the most significant bits by an order of magnitude,
and achieves about 7 dB gain in PSNR.

While our approach is of general applicability, we
are motivated by the recently developed Wireless HD
(WiHD) standard, which supports the transmission of
uncompressed HD content in the unlicensed 60 GHz
frequency band [1], as shown in Figure 1.

Figure 1: HD video over wireless. Uncompressed HD (RGB
444) videos are transmitted wirelessly from transmitter to

receiver.

While the 7 GHz of spectrum in this band makes it
an attractive choice for bandwidth-hungry applications, a
key challenge is the susceptibility to blockage by humans

802978-1-4244-4291-1/09/$25.00 ©2009 IEEE ICME 2009

and furniture at these small carrier wavelengths. One
approach to this problem is to use electronic beamsteering
to steer around obstacles, using reflections from walls or the
ceiling. This introduces a significant amount of variability
in the signal-to-noise ratio, making it important to employ
error resilience at the source coding layer to minimize
quality fluctuations.
 The remainder of this paper is organized as
follows. In Section 2, we describe the details of the wireless
setup. Section 3 motivates and describes our error correction
algorithm, and Section 4 presents results to illustrate the
effectiveness of this technique. We conclude in Section 5
with a brief discussion of future work.

2. COMMUNICATION MODEL

We use a simple model for the communication system
which is described as follows: uncompressed HD video is
encoded using an inner code such as convolutional or turbo-
like code, with an outer Reed-Solomon (RS) code to clean
up residual errors and to detect large error bursts. We
assume that interleavers are used after both the inner and the
outer code, so that any errors in the detected codewords will
get dispersed as random bit errors uniformly distributed
throughout the video frame. This is similar to the error
correction code specified in the WiHD standard [1].

Figure 2: Model for error correction code for HD video. We
use BERin to indicate the byte error rate/ symbol error rate.

Rather than simulate in detail a particular inner
code, we parameterize its performance by the symbol error
probability, BER , seen by the outer RS code. We use the
same outer code used in the WiHD specification i.e. the RS
(224,216) code that is capable of correcting up to 4 byte
errors. When there are more than 4 byte errors in a block,
the RS decoder is unable to correctly decode the codeword.
In that case, there are two possibilities: the RS decoder may
either declare a decoding failure, or it may decode to a
wrong codeword. The latter possibility is extremely rare in
practice and we neglect it, i.e. we assume that whenever
there are more than 4 byte errors, it always leads to a
decoding failure. Further, we assume that the RS code is
systematic; that

in

is, the information symbols are visible in
the codeword. Thus, upon decoding failure, the decoder
simply outputs the information symbols as received,
flagging them as suspect; the overall effect of channel errors
is to produce random residual bit errors after the RS decoder
all of which are flagged as possible bit errors by the
decoder.

Our goal is to use the redundancy in the
uncompressed HD video to correct the flagged bits that are
in error, using their correlation with their neighbors. Given
that the raw channel bit error rate is quite small in a well
designed system, even flagged bits have a high probability
of being right; this is because an RS decoder failure usually
involves only 5 or 6 byte errors, however the decoder flags
all 216 bytes as suspect. Our proposed error resilience
technique is therefore conservative, treating a marked bit as
correct unless established to be incorrect beyond reasonable
doubt. This is in contrast to a related work [2], where all bits
corresponding to a failed codeword are replaced using
information from adjacent pixels; such an aggressive use of
spatial redundancy can result in wrongly flipping correct
bits.

3. THE ERROR CORRECTION TECHNIQUE

We consider 1080p25 HD videos with frame size of
1920x1080 pixels encoded as RGB444 with 8 bits per pixel.
In an 8-bit pixel, the four most significant bits (MSBs) are
more important to protect than the four least significant bits
(LSBs), since errors in the four MSBs give rise to visible
artifacts.

Our error correction technique is based on the fact
that most of the pixels in a HD video frame are very similar
to the spatially adjacent pixels. We analyzed some HD
video frames to quantify the amount of spatial redundancy.
We found that around 95% of the pixels in a frame match
the pixels to their north, south, east and west in the first
MSB. Note that when the MSB in the pixels do not match, it
does not make sense to look for matches among less
significant bits. Among the pixels where the first MSB
matches its neighbors, about 91% match in the second MSB
as well. Similarly, among the pixels where the first two
MSBs match, around 85% match in the third MSB, and
around 70% match in the fourth MSB given that the first
three MSBs match. The match varies between 10-50% for
the four LSBs, which is very low when the total number of
pixels in the frame is considered. Hence, we attempt to
correct as many bit errors as possible in the four MSBs, and,
in keeping with our conservative approach, do not attempt
to correct the LSBs. We now use this redundancy to design
a simple error correction scheme.

Rule for
comparison

Surrounding
pixels do not
match in 4
MSBs

Surrounding
pixels match
and is equal
to the center
pixel in 4
MSBs

Surrounding
pixels match
and is not
equal to the
center pixel
in 4 MSBs

All 45.91% 53.21% 0.86%
Majority 5.48% 83.68% 10.83%

Table 1: Comparison of ‘ALL in consensus’ rule and
‘MAJORITY in consensus’ rule.

803

Table 1 compares two candidate methods: the ‘All in
consensus’ and ‘Majority in consensus’ rules. Even though
‘Majority in consensus’ appears to work well because it has
almost twice the amount of ‘surrounding pixels match and
equal’ to the center pixel in four MSBs compared to ‘All in
consensus’, it has almost ten times ‘surrounding pixels
match and not equal’ to the center pixel in the four MSBs.
In fact, ‘Majority in consensus’ rule actually results in
increased number of bit errors after correction. Since our
application requires a highly conservative rule for bit
flipping, we choose the ‘All in consensus’ rule for our
algorithm. The algorithm works as follows:

1. For every video frame, failure of the RS decoder
indicates the bits that are marked as possibly in
error.

2. We check if the previous significant bit positions
have equal values in all the four surrounding pixels
and in the current pixel.

3. If the previous bits match in all the five pixels
under consideration, we check the current marked
bit position, in the four surrounding pixels.

4. If the values of the bit position checked in the four
surrounding pixels are ALL equal, we say that
these bits are in consensus.

5. If the value of the consensus bits is different from
the value of the marked bit, we flip the marked bit.

6. If the value of the consensus bits is same as the
value of the marked bit, we do not change the
value of the marked bit.

7. We do not try to correct marked bits in any of the
four LSBs.

Figure 4: ‘ALL in consensus rule’ is used for error correction.
The bit position 5 (third MSB) of the center pixel is marked.

In the example shown in Figure 4, the 3rd

significant bit in the center pixel (0 in 1101xxxx) is marked
as a potential bit error. Checking the first 2 MSBs in the
four surrounding pixels, we find that they match the current
pixel (‘11’ as shown in the example). The current bit
(marked by the arrow) is now checked against the
surrounding pixels. Since they are all equal (1 in this case),
we have a consensus. However, the consensus differs from
the value of the marked bit (0 in this case), so we flip this
bit. Hence, the value of this pixel after correction is
1111xxxx.

4. RESULTS

We use five frames of the standard 1080p25 HD videos,
with YUV420 pixel format: Pedestrian, Riverbed, and Rush

Hour for simulations [6]. First, we convert these YUV 420
videos to RGB 444 videos. Then, we simulate the effect of
the channel by introducing random bit errors in each frame,
the number of bit errors being determined by BERin as
follows:

1. We divide the video frame into blocks of 216 bytes
to which 8 parity bytes are added by the RS
encoder, to create a “channel block” of 224 bytes
each. The 216 bytes are mapped to random pixels
in the video frame to account for the interleaving.

2. Given BERin, the byte error rate at the input of the
RS code, we generate a random number, b of byte
errors in a block of 224 incoming bytes. If b>=5,
we have a RS decoder failure, and we flag every
bit in all 216 payload bytes as possible errors. In
addition, we randomly choose b bytes out of the
block, and randomize every bit in these bytes to
model the uncorrected errors.

3. We repeat Step 2 for every channel block in the
frame.
We then apply the ‘ALL in consensus’ rule to

correct the bit errors in the video frame. While we do not
present numerical results due to lack of space, we note that
the proposed scheme significantly reduces the number of
errors in the four MSBs (relative to the number after RS
decoding or before correction). For the first MSB, the
probability that a randomly placed bit error is left
uncorrected is roughly equal to the probability that its four
neighbors do not agree, which we have previously observed
to be about 5%. Thus, we expect the number of bit errors in
the first MSB to be reduced by an order of magnitude after
applying the all-in-consensus rule, and this is what we find
in our simulations. The improvements in the second, third
and fourth MSBs are progressively smaller, corresponding
to the smaller proportion of matches between all four
neighbors.

Figure 5: MSE vs. (1-SSIM) dB, before and after correction for
BERin = 9x10-4 to 1x10-2, exhibit a linear relationship.

We now present some results (both visual and
quantitative) to illustrate the improvement in video quality
resulting from the reductions in MSB errors. We convert the

804

RGB 444 videos back to YUV 420 videos to calculate the
various error measures. A popular quantitative indicator is
the peak signal-to-noise ratio (PSNR). Another error
measure that is closer to the Human Visual System (HVS) is
the Structural Similarity Index (SSIM) that quantifies the
subjective scores [7]. While it is well-known that PSNR
fails to capture certain types of distortions, it is adequate for
our application because we only have randomly distributed
bit errors. To see this, we use the MSU video quality
measurement tool [8] to plot log MSE vs. log (1-SSIM) for
the video frame Pedestrian with random bit errors; see
Figure 5. In this tool, if the error between the frames being
compared is zero, then the PSNR is normalized to 100 dB or
MSE = 6.5025x10-6 (approximately zero) and the SSIM is
equal to 1. It can be seen that the MSE and SSIM are
strongly correlated over a range of BERin before and after
correction. Two other videos, Riverbed and Rush Hour,
yield similar results.

(a)

(b)

Figure 6: (a) An enlarged portion of Pedestrian frame before
correction. (c) An enlarged portion of Pedestrian frame after

correction.

We now present some visual results. A snapshot of
Pedestrian is shown in Figure 6(a). We simulated the
channel at byte error rate of 7x10-3. Figures 6(b) and 6(c)
show the enlarged top left corner of the received frame
before and after correction; notice the reduction in sparkles
due to the correction.

Next, we simulated the channel at various byte
error rates ranging from 9x10-4 to 1x10-2. The PSNR plot at
various byte error rates is shown in Figure 7: the
improvement after correction is about 7 dB at byte error
rates that are high enough for a significant number of bit
errors at the output of the RS decoder.

Figure 7: PSNR (dB) vs. Byte Error Rate (BERin) before and
after correction (around 7dB improvement on average)

5. FUTURE WORK

The proposed error correction using consensus rule takes
advantage of the spatial redundancy in the video frames and
improves PSNR by approximately 7dB. It is of interest to
explore techniques that also use temporal redundancy,
combination of consensus and averaging approaches to
correct or smooth LSBs. Finally, it is important to explore a
broader set of options for HD over wireless, including the
design of “lightweight” compression schemes that retain the
advantages of uncompressed HD while utilizing bandwidth
more efficiently.

6. REFERENCES

[1] WirelessHD, “WirelessHD Specification Version 1.0
Overview,” WirelessHD, October 2007. [Online]. Available:
http://www.wirelesshd.org.
[2] H. Singh, et al., “MAC 23-2 – Supporting Uncompressed HD
Video Streaming Without Retransmissions Over 60GHz Wireless
Networks,” in Wireless Communications and Networking
Conference, 2008, pp. 1939-1944.
[3] H. Singh, X. Qin, H. Shao, C. Ngo, C. Kwon, S.S. Kim,
“Support of Uncompressed Video Streaming Over 60GHz
Wireless Networks,” in Consumer Communications and
Networking Conference, 2008, pp. 243-248.
[4] H. Shao, et al., “Adaptive Multi-beam transmission of
Uncompressed Video over 60GHz Wireless Systems,” in Future
Generation Communication and Networking, 2007, pp. 430-435.
[5] N.Geri, “Wireless HDTV–Compressed or Uncompressed? That
is the question,” AMIMON Ltd, November 2006.
[6] M. Alvarez, “HD - VideoBench. A Benchmark for Evaluating
High Definition Digital Video Applications,” June 2007. [Online].
Available:
http://personals.ac.upc.edu/alvarez/hdvideobench/install.html
[7] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli,
“Image Quality Assessment: From Error Visibility to Structural
Similarity,” IEEE Transactions on Image Processing, vol.13, no.
4, pp. 600-612, April 2004.
[8] MSU Graphics and Media Lab (Video Group), MSU Video
Quality Measurement Tool. [Online]. Available:
http://compression.ru/video/quality_measure/video_measurement_
tool_en.html

805

