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ABSTRACT

Digital transmission of uncompressed high-definition video 
is challenging because of its high data rate and its extreme 
sensitivity to bit errors. In this paper we propose a simple 
error correction scheme to reduce the bit error effects in the 
video at the receiver end of a wireless channel. Our scheme 
uses the large amount of spatial redundancy already present 
in uncompressed HD video data to provide an extra layer of 
protection in addition to that provided by channel coding. 
Thus, our method requires no change to the video signal 
being transmitted and is compatible with any existing 
solution for HD video transmission. Using simulations over 
a range of byte error rates, we show that our scheme 
effectively reduces the number of visible artifacts because 
of uncorrected channel errors, and provides approximately 7 
dB improvement in peak signal to noise ratio. 

Index Terms - Uncompressed HD video, Wireless 
HDTV, Byte Error Rate

1. INTRODUCTION 

We consider the problem of transmitting an uncompressed 
high definition (HD) video stream over a wireless 
connection. This problem is motivated by the application 
scenario illustrated in Figure 1, where a HD video source 
such as a Blu-ray disc is decrypted and decoded in a device 
that then transmits the uncompressed video stream 
wirelessly to a HD display. This is attractive because it 
offers a way to minimize wiring in a home theater setting 
and also provides a single universal and standard interface 
to any HD video display, thus simplifying installation of 
new devices [1].  

HDTV (High Definition Television) has become 
popular because it has higher resolution than traditional 
television systems and an aspect ratio of 16:9 influenced by 
widescreen cinema. Presently, the data rate of 
uncompressed HD video can be as high as 3.0 Gbps 
(1080p60, RGB444 pixel format at 8 bits per pixel). In the 
future, the data rate is expected to rise with increases in 
resolution and color depth.  

Since HD video sources require such large data 
rates, it may seem reasonable to compress the video stream 
before transmitting. However, compression introduces 

delay, reduces video quality and increases complexity at the 
transmitter (video source) and receiver (HDTV). Also, the 
video display will have to support multiple codecs to 
maintain inter-operability with the various video sources. 
Furthermore, the HDMI connector interface for HD video 
sources and displays supports uncompressed HD 
transmission. Motivation to transmit uncompressed HD 
video and more information on disadvantages related to 
compression can be found in [2-5]. 

Random bit errors (especially in the most 
significant bits of a pixel) in an uncompressed HD frame are 
typically visible to the naked eye as “sparkles.” Given the 
high user expectations for HDTV, it is critical that decoding 
failures in the digital communication scheme used to convey 
these bits be masked from the user.  This is especially 
important in applications where retransmission-based error 
recovery is not possible or desirable (e.g., when streaming 
to multiple screens).  In this paper, we examine whether we 
can use the large amounts of redundancy in the 
uncompressed video to obtain low-complexity error 
resilience techniques to complement the error correction 
provided by channel coding. For the example system 
considered, the proposed scheme reduces the number of 
errors in the most significant bits by an order of magnitude, 
and achieves about 7 dB gain in PSNR. 

While our approach is of general applicability, we 
are motivated by the recently developed Wireless HD 
(WiHD) standard, which supports the transmission of 
uncompressed HD content in the unlicensed 60 GHz 
frequency band [1], as shown in Figure 1.  

Figure 1: HD video over wireless. Uncompressed HD (RGB 
444) videos are transmitted wirelessly from transmitter to 

receiver.

While the 7 GHz of spectrum in this band makes it 
an attractive choice for bandwidth-hungry applications, a 
key challenge is the susceptibility to blockage by humans 
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and furniture at these small carrier wavelengths. One 
approach to this problem is to use electronic beamsteering 
to steer around obstacles, using reflections from walls or the 
ceiling. This introduces a significant amount of variability 
in the signal-to-noise ratio, making it important to employ 
error resilience at the source coding layer to minimize 
quality fluctuations.
 The remainder of this paper is organized as 
follows. In Section 2, we describe the details of the wireless 
setup. Section 3 motivates and describes our error correction 
algorithm, and Section 4 presents results to illustrate the 
effectiveness of this technique. We conclude in Section 5 
with a brief discussion of future work. 

2. COMMUNICATION MODEL

We use a simple model for the communication system 
which is described as follows: uncompressed HD video is 
encoded using an inner code such as convolutional or turbo-
like code, with an outer Reed-Solomon (RS) code to clean 
up residual errors and to detect large error bursts. We 
assume that interleavers are used after both the inner and the 
outer code, so that any errors in the detected codewords will 
get dispersed as random bit errors uniformly distributed 
throughout the video frame. This is similar to the error 
correction code specified in the WiHD standard [1]. 

Figure 2: Model for error correction code for HD video. We 
use BERin to indicate the byte error rate/ symbol error rate. 

Rather than simulate in detail a particular inner 
code, we parameterize its performance by the symbol error 
probability, BER , seen by the outer RS code. We use the 
same outer code used in the WiHD specification i.e. the RS 
(224,216) code that is capable of correcting up to 4 byte 
errors. When there are more than 4 byte errors in a block, 
the RS decoder is unable to correctly decode the codeword. 
In that case, there are two possibilities: the RS decoder may 
either declare a decoding failure, or it may decode to a 
wrong codeword. The latter possibility is extremely rare in 
practice and we neglect it, i.e. we assume that whenever 
there are more than 4 byte errors, it always leads to a 
decoding failure. Further, we assume that the RS code is 
systematic; that 

in

is, the information symbols are visible in 
the codeword. Thus, upon decoding failure, the decoder 
simply outputs the information symbols as received, 
flagging them as suspect; the overall effect of channel errors 
is to produce random residual bit errors after the RS decoder 
all of which are flagged as possible bit errors by the 
decoder.

Our goal is to use the redundancy in the 
uncompressed HD video to correct the flagged bits that are 
in error, using their correlation with their neighbors. Given 
that the raw channel bit error rate is quite small in a well 
designed system, even flagged bits have a high probability 
of being right; this is because an RS decoder failure usually 
involves only 5 or 6 byte errors, however the decoder flags 
all 216 bytes as suspect. Our proposed error resilience 
technique is therefore conservative, treating a marked bit as 
correct unless established to be incorrect beyond reasonable 
doubt. This is in contrast to a related work [2], where all bits 
corresponding to a failed codeword are replaced using 
information from adjacent pixels; such an aggressive use of 
spatial redundancy can result in wrongly flipping correct 
bits. 

3. THE ERROR CORRECTION TECHNIQUE

We consider 1080p25 HD videos with frame size of 
1920x1080 pixels encoded as RGB444 with 8 bits per pixel. 
In an 8-bit pixel, the four most significant bits (MSBs) are 
more important to protect than the four least significant bits 
(LSBs), since errors in the four MSBs give rise to visible 
artifacts.

Our error correction technique is based on the fact 
that most of the pixels in a HD video frame are very similar 
to the spatially adjacent pixels. We analyzed some HD 
video frames to quantify the amount of spatial redundancy. 
We found that around 95% of the pixels in a frame match 
the pixels to their north, south, east and west in the first 
MSB. Note that when the MSB in the pixels do not match, it 
does not make sense to look for matches among less 
significant bits. Among the pixels where the first MSB 
matches its neighbors, about 91% match in the second MSB 
as well. Similarly, among the pixels where the first two 
MSBs match, around 85% match in the third MSB, and 
around 70% match in the fourth MSB given that the first 
three MSBs match. The match varies between 10-50% for 
the four LSBs, which is very low when the total number of 
pixels in the frame is considered. Hence, we attempt to 
correct as many bit errors as possible in the four MSBs, and, 
in keeping with our conservative approach, do not attempt 
to correct the LSBs. We now use this redundancy to design 
a simple error correction scheme.  

Rule for 
comparison 

Surrounding 
pixels do not 
match in 4 
MSBs

Surrounding 
pixels match 
and is equal 
to the center 
pixel in 4 
MSBs

Surrounding 
pixels match 
and is not 
equal to the 
center pixel 
in 4 MSBs 

All 45.91% 53.21% 0.86%
Majority 5.48% 83.68% 10.83%

Table 1: Comparison of ‘ALL in consensus’ rule and 
‘MAJORITY in consensus’ rule. 
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Table 1 compares two candidate methods: the ‘All in 
consensus’ and ‘Majority in consensus’ rules. Even though 
‘Majority in consensus’ appears to work well because it has 
almost twice the amount of ‘surrounding pixels match and 
equal’ to the center pixel in four MSBs compared to ‘All in 
consensus’, it has almost ten times ‘surrounding pixels 
match and not equal’ to the center pixel in the four MSBs. 
In fact, ‘Majority in consensus’ rule actually results in 
increased number of bit errors after correction. Since our 
application requires a highly conservative rule for bit 
flipping, we choose the ‘All in consensus’ rule for our 
algorithm. The algorithm works as follows: 

1. For every video frame, failure of the RS decoder 
indicates the bits that are marked as possibly in 
error.

2. We check if the previous significant bit positions 
have equal values in all the four surrounding pixels 
and in the current pixel. 

3. If the previous bits match in all the five pixels 
under consideration, we check the current marked 
bit position, in the four surrounding pixels. 

4. If the values of the bit position checked in the four 
surrounding pixels are ALL equal, we say that 
these bits are in consensus. 

5. If the value of the consensus bits is different from 
the value of the marked bit, we flip the marked bit. 

6. If the value of the consensus bits is same as the 
value of the marked bit, we do not change the 
value of the marked bit. 

7. We do not try to correct marked bits in any of the 
four LSBs. 

Figure 4: ‘ALL in consensus rule’ is used for error correction. 
The bit position 5 (third MSB) of the center pixel is marked. 

In the example shown in Figure 4, the 3rd

significant bit in the center pixel (0 in 1101xxxx) is marked 
as a potential bit error. Checking the first 2 MSBs in the 
four surrounding pixels, we find that they match the current 
pixel (‘11’ as shown in the example). The current bit 
(marked by the arrow) is now checked against the 
surrounding pixels. Since they are all equal (1 in this case), 
we have a consensus.  However, the consensus differs from 
the value of the marked bit (0 in this case), so we flip this 
bit. Hence, the value of this pixel after correction is 
1111xxxx.

4. RESULTS 

We use five frames of the standard 1080p25 HD videos, 
with YUV420 pixel format: Pedestrian, Riverbed, and Rush 

Hour for simulations [6]. First, we convert these YUV 420 
videos to RGB 444 videos. Then, we simulate the effect of 
the channel by introducing random bit errors in each frame, 
the number of bit errors being determined by BERin as 
follows: 

1. We divide the video frame into blocks of 216 bytes 
to which 8 parity bytes are added by the RS 
encoder, to create a “channel block” of 224 bytes 
each. The 216 bytes are mapped to random pixels 
in the video frame to account for the interleaving. 

2. Given BERin, the byte error rate at the input of the 
RS code, we generate a random number, b of byte 
errors in a block of 224 incoming bytes. If b>=5, 
we have a RS decoder failure, and we flag every 
bit in all 216 payload bytes as possible errors. In 
addition, we randomly choose b bytes out of the 
block, and randomize every bit in these bytes to 
model the uncorrected errors. 

3. We repeat Step 2 for every channel block in the 
frame. 
We then apply the ‘ALL in consensus’ rule to 

correct the bit errors in the video frame. While we do not 
present numerical results due to lack of space, we note that 
the proposed scheme significantly reduces the number of 
errors in the four MSBs (relative to the number after RS 
decoding or before correction).  For the first MSB, the 
probability that a randomly placed bit error is left 
uncorrected is roughly equal to the probability that its four 
neighbors do not agree, which we have previously observed 
to be about 5%. Thus, we expect the number of bit errors in 
the first MSB to be reduced by an order of magnitude after 
applying the all-in-consensus rule, and this is what we find 
in our simulations. The improvements in the second, third 
and fourth MSBs are progressively smaller, corresponding 
to the smaller proportion of matches between all four 
neighbors. 

Figure 5: MSE vs. (1-SSIM) dB, before and after correction for 
BERin = 9x10-4 to 1x10-2, exhibit a linear relationship.

We now present some results (both visual and 
quantitative) to illustrate the improvement in video quality 
resulting from the reductions in MSB errors. We convert the 
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RGB 444 videos back to YUV 420 videos to calculate the 
various error measures. A popular quantitative indicator is 
the peak signal-to-noise ratio (PSNR). Another error 
measure that is closer to the Human Visual System (HVS) is 
the Structural Similarity Index (SSIM) that quantifies the 
subjective scores [7]. While it is well-known that PSNR 
fails to capture certain types of distortions, it is adequate for 
our application because we only have randomly distributed 
bit errors. To see this, we use the MSU video quality 
measurement tool [8] to plot log MSE vs. log (1-SSIM) for 
the video frame Pedestrian with random bit errors; see 
Figure 5. In this tool, if the error between the frames being 
compared is zero, then the PSNR is normalized to 100 dB or 
MSE = 6.5025x10-6 (approximately zero) and the SSIM is 
equal to 1. It can be seen that the MSE and SSIM are 
strongly correlated over a range of BERin before and after 
correction. Two other videos, Riverbed and Rush Hour, 
yield similar results. 

(a)

(b)

Figure 6: (a) An enlarged portion of Pedestrian frame before 
correction. (c) An enlarged portion of Pedestrian frame after 

correction. 

We now present some visual results. A snapshot of 
Pedestrian is shown in Figure 6(a). We simulated the 
channel at byte error rate of 7x10-3. Figures 6(b) and 6(c) 
show the enlarged top left corner of the received frame 
before and after correction; notice the reduction in sparkles 
due to the correction.

Next, we simulated the channel at various byte 
error rates ranging from 9x10-4 to 1x10-2. The PSNR plot at 
various byte error rates is shown in Figure 7: the 
improvement after correction is about 7 dB at byte error 
rates that are high enough for a significant number of bit 
errors at the output of the RS decoder.  

Figure 7: PSNR (dB) vs. Byte Error Rate (BERin) before and 
after correction (around 7dB improvement on average) 

5. FUTURE WORK 

The proposed error correction using consensus rule takes 
advantage of the spatial redundancy in the video frames and 
improves PSNR by approximately 7dB. It is of interest to 
explore techniques that also use temporal redundancy, 
combination of consensus and averaging approaches to 
correct or smooth LSBs. Finally, it is important to explore a 
broader set of options for HD over wireless, including the 
design of “lightweight” compression schemes that retain the 
advantages of uncompressed HD while utilizing bandwidth 
more efficiently. 
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