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Abstract—In this paper, we present a simple, distributed
algorithm for frequency control and optimal economic dispatch of
power generators. In this algorithm each generator independently
adjusts its power-frequency set-points of generators to correct
for generation and load fluctuations using only the aggregate
power imbalance in the network, which can be observed by each
generator through local measurements of the frequency deviation
on the grid. In the absence of power losses, we prove that the
distributed algorithm eventually achieves optimality i.e. minimum
cost power allocations, under mild assumptions (strict convexity
and positivity of cost functions); we also present numerical results
from simulations to compare its performance with traditional
(centralized) dispatch algorithms. Furthermore, we show that
the performance of the algorithm is robust in the sense that
even with power losses it corrects for frequency deviations, and
for low levels of losses, it still achieves near-optimal allocations;
we present an approximate analysis to quantify the resulting
suboptimality.

I. INTRODUCTION

WE present a simple distributed algorithm for load
frequency control and economic dispatch in an electric

grid; in this algorithm each generator uses local knowledge
of its own cost of generation along with measurements of
frequency deviations to dynamically adjust its real power
generation. We show that over the course of network operation,
the algorithm eventually achieves the condition of optimal eco-
nomic dispatch under mild assumptions on the cost functions
of the generators when there are no line losses (and near-
optimal allocations as long as the line losses are not too large).
This generalizes our earlier work in [1] where optimality was
achieved only when all generators had the same underlying
production cost i.e. identical cost functions.

A. Motivation

This work is motivated by the anticipated needs of the
next generation electric grid which is expected to have smart
consumer end-nodes [2] and a high penetration of alternative
energy generators. Since the availability of alternative energy
sources such as wind and solar generators is inherently inter-
mittent in time and dispersed in geography [3], the ability
of the electric grid to dynamically adjust generation and
consumption is key to achieving a high load factor and efficient
energy use. Decentralized control techniques are well-suited
to such a flexible electric grid, and this recognition has led

Department of Electrical and Computer Engineer-
ing, University of Iowa, Iowa City, IA 52242. Email:
[rmudumbai@engineering.,dasgupta@engineering.,brianbumseok-
cho@]uiowa.edu. Supported in part by US NSF grants ECS-0622017,
CCF-072902, and CCF-0830747.

to an increased interest in concepts such as microgrids [4]
and distributed generation (DG) [5]. Similarly, decentralized
control techniques are extremely attractive to “smart grids” [6],
where there is the possiblity of controlling loads in addition
to generation, in response to real-time surplus or scarcity of
power in the electric grid.

In a traditional electric grid, control of generators, i.e.
Automatic Generation Control (AGC)1 is accomplished on
multiple time-scales using multiple different mechanisms [9].
Primary control is implemented in a distributed fashion at the
generators, but secondary and tertiary control (correspond-
ing to load frequency control (LFC) and economic dispatch
(ED) respectively) are implemented from a centralized control
station at the Load Serving Entity (LSE) and transmission
system operator (TSO) [10]. The goal of the secondary control
process is to reduce the Area Control Error (ACE) to zero. The
ACE is a measure of the imbalance between rated generation
capacity and power consumed within the control area, and the
LFC algorithm adjusts the power generation levels in order to
achieve power balance within the control area.

Traditionally, an ad hoc allocation is used by the secondary
controller to return ACE to zero without consideration of
cost minimization; the latter function is the responsibility of
the tertiary control process or economic dispatch (ED). The
economic dispatch process periodically re-allocates the total
power among generators to minimize total cost. Once set by
the dispatch algorithm, the power allocations may deviate over
time from their optimal values because of cumulative load
fluctuations and the actions of the secondary controller. The
dispatch problem is typically formulated as a multivariable
constrained optimization problem [11] that is then solved
using Lagrangian techniques such as “lambda iteration” [12].
However, when line losses are included in the model, the
dispatch problem becomes analytically intractable even with
simplified models for the generator cost functions. In previous
academic work on the dispatch problem, complex numerical
optimization methods such as genetic algorithms, particle
swarm optimization or Monte-Carlo methods [13], [14] are
often employed to determine the minimum cost allocation
of power across generators. In contrast, in the algorithm
described in this paper, there is no centralized dispatcher;

1Terms such as AGC [7], [8] may be used to mean slightly different things
in the technical literature from different parts of the world, partly mirroring
differences in the structure of the electric grid itself between Europe, North
America and so on. In this paper, AGC is used as a generic term to include the
hierarchy of mechanisms for frequency regulation, tie-line power flow control
and economic dispatch.
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instead each generator adjusts its own generation power it-
eratively and independently from other generators and this
procedure is shown (under some conditions) to quickly correct
for frequency deviations, and also eventually to converge to
minimum cost allocations automatically. Thus this iterative
procedure simultaneously performs the traditional functions of
load frequency control and economic dispatch i.e. secondary
and tertiary control.

B. Contributions

Our proposed algorithm is based on the following simple
idea. If we neglect power losses, the minimum cost allocation
of power is achieved when the marginal cost of an additional
unit of generation is equal for all generators. Thus, when there
is a positive power imbalance (i.e. instantaneous load exceeds
rated generation), it is intuitively reasonable for a generator
with a lower marginal cost to increase its generation by a larger
amount than one with a higher marginal cost. Conversely,
when there is a negative power imbalance, it is reasonable
for a high marginal cost generator to reduce its generation by
a relatively larger amount. On the other hand, one must also
account for the fact that the generator whose cost function
has a higher second derivative, will undergo a faster rise in
its marginal cost for the same unit of added generation. The
algorithm of this paper accordingly modifies the algorithm of
[1] to accommodate this effect. As in [1], each generator has
access only to its own cost function, and (local) measurements
of frequency deviations which serves as an indirect measure
of the power imbalance in the grid.

Our distributed approach offers the following features that
makes it an interesting alternative to the traditional centralized
approach for certain applications.

1) Scalability. Centralized dispatch algorithms require
knowledge of the cost functions of each generator which
limits their scalability. Our algorithm is fully distributed
and thus, more scalable which makes it especially at-
tractive for power grids supplied by a large number of
small distributed generators.

2) Dynamic adaptability. The distributed algorithm re-
sponds automatically to changes in loads and in gen-
eration costs and modifies the power allocations accord-
ingly. This can be attractive when the generation and
loads are highly variable as in grids with a large number
of intermittent alternative energy generators.

3) Model independence. The distributed approach solves
the optimization problem in an iterative “online” fashion
and as such, does not require a detailed modeling of
power flows or line losses.

The main contribution of this paper is to describe a dis-
tributed algorithm for optimal dispatch of power generators,
establish some of its optimality and convergence properties,
illustrate its performance using simulation results and mo-
tivate further research into new techniques for the control
and management of an electric grid with high penetration
of alternative energy sources and advanced capabilities such

as smart meters and flexible loads. Specifically, we show the
following properties:

(A) For a constant load our algorithm exponentially forces
the network to remove the frequency deviation, with or
without power losses.

(B) Whenever there is a power imbalance, the network
reallocates the power generation across generators in
such a way as to reduce the difference between the
marginal costs of its constituent generators.

(C) If the load remains constant, under our algorithm, the
network corrects for the frequency deviations and may
reach an equilibrium without necessarily equalizing the
marginal costs. However, such a stationary point, with
zero frequency deviation but unequal marginal costs is
an unstable stationary point. Taken together with (B),
this implies that random load fluctuations will drive the
algorithm eventually to equal marginal costs.

(D) If power losses are negligible, equal marginal costs
implies optimality i.e. minimization of the total gener-
ation cost. Even with losses the algorithm continues to
eventually equalize the marginal costs. This of course
is suboptimal in general, in terms of minimization of
total generation cost. However, we demonstrate that near
optimality is achieved under small losses, and quantify
the extent of the suboptimality.

We also present simulation results to illustrate the behavior
of the algorithm and compare its performance with traditional
centralized dispatch algorithms. We also show that the al-
gorithm still achieves near-optimal performance with losses
provided the level of losses is not too large.

II. PROBLEM DESCRIPTION

We model the economic dispatch problem as follows. We
assume that there are N generators supplying power to the
network. At time-step k, we denote the total power consumed
by Pload[k], power losses in the grid by Ploss[k], and the active
power set point for generator i at the rated system frequency
by Ri[k], i ∈ 1 . . . N . As a result, the power imbalance in the
system is given by

∆P [k] = Pload[k]−
N∑
i=1

Ri[k] + Ploss[k] (II.1)

This model is illustrated in Fig. II. We neglect the effects of
reactive power flows, voltage deviations and transients as is
standard for economic dispatch problems.

Note that Ri[k] represents the active power set-point; the
actual active power produced by each generator is determined
by its primary controller which uses Ri[k] as a reference.
More precisely, we assume that each generator is equipped
with a primary controller that implements a power-frequency
characteristic (see for e.g. [15]) with a negative droop, so that
the active power Pi[k] produced at time k is related to the grid
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Fig. 1. Model of the electric grid for economic dispatch.

frequency f [k] as:

Pi[k] = Ri[k]− βi∆f [k] (II.2)
where ∆f [k]

.
= f [k]− f0

Note that at the rated frequency f0 (usually 60 Hz or 50 Hz),
Pi[k] ≡ Ri[k]. Since there is no energy storage in the grid,
conservation of energy requires that

Pload[k]−
N∑
i=1

Pi[k] + Ploss[k] ≡ 0.

Combining (II.2) and (II.1), we get

∆P [k] = Pload[k]−
N∑
i=1

Pi[k]−∆f [k]
∑
i

βi + Ploss[k]

= −β∆f [k] (II.3)

where we have denoted β .
=
∑
i βi. In other words, the total

imbalance between the rated generation power and the load
causes a proportional frequency deviation ∆f [k] = 1

β∆P [k]
on the grid that can be monitored continuously by each
generator. This is analogous to the ACE observed by the
secondary controller in a traditional LFC implementation. We
assume that β remains constant for all values of Ri[k] and
∆P [k]. This is a reasonable assumption for small frequency
deviations.

Assumption 2.1: Each Ji(·) is twice differentiable and a
convex function. Specifically, there exist η1 > 0 and a
positive nondecreasing function f(·), that is finite for all finite
argument, such that for all P , and i ∈ {1, · · · , N}, the second
derivative

J ′′
i (P )

.
=
d2Ji(P )

dP 2
,

satisfies η1 ≤ J ′′
i (P ) ≤ f(P ). Further J ′′

i (·) is piece-wise
continuous.
Let us define the marginal costs

J ′
i(P )

.
=
dJi(P )

dP
.

We also assume non-zero idling cost:

Assumption 2.2: There exists η2 > 0, such that J ′
i(0) > η2

for all i ∈ {1, · · · , N}.
Intuitively, the above assumptions require that the cost function
be monotonically increasing, convex and bounded.

Finally we assume that the power losses in the grid vary
smoothly with the generator powers. We denote

R
.
= [R1, R2, . . . , RN ]T (II.4)

i.e. R(·) : R→ RN has elements representing the power set-
points across the generators. Further we denote the power loss
by

L(R)
.
= Ploss. (II.5)

Assumption 2.3: The function L(·) is nonnegative, differ-
entiable and there holds:

γi(R)
.
=

∂L

∂Ri
≤ γ0 < 1.

Thus, the γi, represent the fraction of an additional unit of
power from generator i that is lost in the power grid.

It is easy to show using Lagrangian techniques that under
Assumption 2.1, and zero power loss, the solution to the above
optimization problem satisfies:

J ′
i(Ri) ≡

dJi(Ri)

dRi
= constant

.
= λ, ∀i ∈ {1 . . . N} (II.6)

Equation (II.6) has the well known interpretation that at the
minimum cost allocation of power, the marginal cost J ′

i(Ri)
of an additional unit of power is constant across all generators.
The optimal marginal cost is λ.

III. DISTRIBUTED ALGORITHM FOR OPTIMAL ECONOMIC
DISPATCH

We now describe our distributed algorithm. This is an
iterative algorithm under which at time-step k, generator i
updates its rated power as follows.

Ri[k + 1] =

Ri[k] +
(

α1∆P [k]
J′
i(Ri[k])J′′

i (Ri[k])

)
, ∆P [k] ≥ 0

Ri[k] + α2∆P [k]
J′
i(Ri[k])

J′′
i (Ri[k]) , else

(III.7)
where α1 > 0 and α2 > 0 are paramaters controlling the rate
of adaptation. Note that all generators are calibrated with the
same value for these parameters.

The intuition behind (III.7) is explained as follows. When
the power imbalance ∆P [k] is positive, then the generators
make a small increase to their rated powers in inverse propor-
tion to their marginal cost. Thus generators with low marginal
costs increase their allocation more rapidly than high cost
generators. Conversely when the ∆P [k] is negative, then the
low cost generator reduces its power less rapidly compared to
high cost generators. The inclusion of the second derivative
reflects the fact that a large second derivative causes larger
changes to the marginal costs.

Observe that to implement this algorithm each generator
only needs knowledge of its own cost function, in addition
to a term proportional to the load imbalance that can be
obtained by locally measuring the load frequency deviation.
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Thus the algorithm is implemented totally locally. As will
be proved in the sequel, over time, this algorithm tends to
equalize the marginal costs across generators and thus leads
to the minimum cost solution, when Ploss[k] ≡ 0.

We next examine the properties of the algorithm in more
detail.

IV. PROPERTIES OF THE DISTRIBUTED DISPATCH
ALGORITHM

It is more convenient to analyze this algorithm by looking
at its continuous time version described as follows. The results
directly extend to the discrete time version for small αi. The
continuous time algorithm is as follows:

dRi(t)

dt
=

α1∆P (t)
(

1
J′
i(Ri(t))J′′

i (Ri(t))

)
, if ∆P (t) ≥ 0

α2∆P (t)
J′
i(Ri(t))

J′′
i (Ri(t))

, otherwise

(IV.8)
Denote the vector corresponding to the optimal allocation

(II.6) by Ropt. Further let 1
.
= [1, 1, . . . , 1]T denote the

“all-ones” vector. Then we can write

∆P (t) ≡ Pload(t)− 1TR(t) + L(R(t)) (IV.9)

Observe, under Assumption 2.3, with

Γ(R) = [γ1(R), · · · , γN (R)]
T
, (IV.10)

with a constant load, there hold:

∆Ṗ (t) = −1T Ṙ(t) + L̇(R(t))

= − [1− Γ(R)]
T
Ṙ(t). (IV.11)

Observe, regardless of whether γi(R) is negative, because of
Assumption 2.3, for all i there holds:

1− γi(R) ≥ 1− γ0 > 0. (IV.12)

Consequently, with a positive ∆P (t), the Ṙi are strictly
positive, and

∆Ṗ (t) = − [1− Γ(R)]
T
Ṙ(t)

≤ − (1− γ0)1T Ṙ

≤ 0. (IV.13)

Similarly, when ∆P (t) is negative, the Ṙi are nonpositive,
and

∆Ṗ (t) = − [1− Γ(R)]
T
Ṙ(t)

≥ − (1− γ0)1T Ṙ

≥ 0. (IV.14)

We next prove the existence of a solution to (IV.8).
Theorem 4.1: Consider (IV.8), under assumptions 2.1,

2.2and 2.3, with R as in (II.4), and Pload(t) a positive
constant. Suppose for all i ∈ {1, · · ·N}, Ri(0) > 0 and
∆P (0) is finite. Then the solution to (IV.8) exists and is
unique. Further, for all i ∈ {1, · · · , N}, and all t ≥ 0,
J ′
i(Ri(t)) > 0 whenever ∆P (0) > 0. On the other hand

when ∆P (0) < 0 for all i ∈ {1, · · · , N}, and all t ≥ 0,
J ′
i(Ri(t)) ≥ 0.

We next show that (IV.8) induces ∆P (t) to converge
exponentially to zero.

Theorem 4.2: Under the conditions of Theorem 4.1 suppose
Pload(t) is a positive constant. Then the power imbalance
∆P (t) converges exponentially to zero.

The Theorem does not guarantee that the equilibrium point
has minimum cost in the lossless case. Indeed for a constant
load, ∆P (t) may converge before the marginals are equalized.
The next theorem shows that in fact the algorithm drives
the marginals towards equalization while a load imbalance
persists.

Theorem 4.3: Under the conditions of Theorem 4.1, sup-
pose ∆P (t) 6= 0, and for some i, j, J ′

i(Ri(t)) > J ′
j(Rj(t)).

Then (
d(J ′

i(Ri(t))− J ′
j(Rj(t)))

dt

)
< 0.

To complete our study of equalization of marginals we next
present the following theorem.

Theorem 4.4: Under the conditions of Theorem 4.1, con-
sider the stationary point where ∆P (t) = 0, but for some
{i, j} ⊂ {1, · · · , N},

J ′
i(Ri(t)) 6= J ′

j(Rj(t)).

Then this stationary point is unstable.
Taken together, the significance of Theorems 4.3 and 4.4,

is as follows. While ∆P (t) 6= 0, the algorithm will tend to
drive the marginals closer. If ∆P (t), becomes zero before the
marginals are equalized, then the slightest noise in the Ri or
load fluctuations that enforce the condition ∆P (t) 6= 0, will
again tend to drive the marginals closer to each other. Over
time the practical effect of this is to equalize the marginals.

Observe that all results in this section accommodate power
losses. Of course equalization of the marginals is suboptimal
unless the power losses are zero. Section V quantifies the level
of suboptimality under small power losses.

V. LOSSY PERFORMANCE

Thus, with zero losses the algorithm eventually achieves
optimum performance. We now quantify the level of subopti-
mality when γ0 in Assumption 2.3 is nonzero but small. This is
physically reasonable because, recall that the γi (in the sequel
and here we drop the argument R), represents the fraction of
an additional unit of power that is lost in the power grid, and
in any well-designed grid, we expect this to be very small e.g.
γ0 < 10%. In this section we demonstrate that for small γ0,
the level of suboptimality is quadratic in γ0.

We note that Theorems 4.2 and 4.3 continue to hold
for the algorithm defined in (III.7) even with power losses,
however, it is no longer true that the equal marginal cost
allocation achieves the minimum cost. Indeed, we can show
using Lagrangian methods that the minimum cost allocation
Ropt

.
= [R1,opt, R2,opt, . . . , RN,opt]

T satisfies(
1

(1− γi)
dJi
dRi

)
Ri=Ri,opt

=

(
1

(1− γj)
dJj
dRj

)
Rj=Rj,opt

, ∀ i, j

(V.15)
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We next show that the resulting sub-optimality is small pro-
vided that the marginal power losses (i.e. γi) are not too large.

We have noted that the algorithm of (III.7) tends to equalize
marginal cost allocation which may not be the same as (V.15).
Let us denote this equalized marginal cost allocation by R0

.
=

[R1,0, R2,0, . . . , RN,0]T and the marginal cost corresponding
to this allocation as

λ0
.
=

(
dJi
dRi

)
Ri=Ri,0

≡
(
dJj
dRj

)
Rj=Rj,0

.

From our assumption that the marginal power losses are
small, under suitable smoothness assumptions, r .

= Ropt−R0

will be small, where r ≡ [r1, r2, . . . , rN ]T is the deviation
of the equal marginal cost allocation from the minimum cost
allocation. Thus we can write(

dJi
dRi

)
Ri=Ri,opt

≈
(
dJi
dRi

)
Ri=Ri,0

+ ri
d2Ji
dR2

i

= λ0

(
1 +

ri
λ0

d2Ji
dR2

i

)
(V.16)

Furthermore, since both R0 and Ropt satisfy the power
balance constraint, we have 1TRopt − L(Ropt) ≡ 1TR0 −
L(R0) ≡ Pload. Thus we have 1T r = L(Ropt) − L(R0) ≡∑
i γiri, which gives after rearrangement

∑
i(1 − γi)ri = 0.

Thus, it is not possible to have either ri ≥ 0,∀i or ri ≤ 0,∀i.
Without loss of generality, through a relabeling of generators
if need be, assume that r1 > 0 and r2 < 0. Using (V.15) and
(V.16), we have

1

(1− γ1)
λ0

(
1 +

r1

λ0

d2J1

dR2
1

)
≈ 1

(1− γ2)
λ0

(
1 +

r2

λ0

d2J2

dR2
2

)
≤ λ0

(1− γ0)
(V.17)

where we have used the fact that γ2 ≤ γ0 and the assumption
that r2 < 0. Thus using the fact that γ1 < γ0, there holds:

r1 ≤
λ0γ0

(1− γ0)

1
d2J1
dR2

1

≤ λ0γ0

η1(1− γ0)
(V.18)

Using the same argument for all generators i, we have

|ri| ≤
γ0

(1− γ0)

λ0

η1
(V.19)

Finally we have

J(Ropt) ≡
∑
i

Ji(Ri,opt)

≈ J(R0) +
∑
i

ri

(
dJi
dRi,0

)
= J(R0) + λ0

∑
i

ri

= J(R0) + λ0 (L(R0)− L(Ropt)) (V.20)

≥ J(R0)− λ0γ0

∑
i

|ri|

≥ J(R0)− Nγ2
0

(1− γ0)

λ2
0

η1
(V.21)

Equation (V.21) shows that the suboptimality of the equal
marginal cost solution varies with γ2

0 and therefore is small
provided the power loss is not too large. This observation is
verified by numerical simulation in Section VI.

VI. SIMULATION RESULTS AND GAIN SELECTION

We now present numerical results to provide some intuition
into the performance of the algorithm. The αi were selected in
these simulations using all the considerations note above bar-
ring the ones associated with network and generator dynamics.
We consider the dispatch problem considered in [13] (Example
7.4) of allocating 1800 kW of total generation in a small grid
with 6 generators. Each generator has a quadratic cost function
i.e. generator i has a cost given by Ji(R) ≡ ciR2 + biR+ ai,
where ci > 0 guarantees the convexity of the cost function.

We simulated this system starting from an arbitrarily chosen,
suboptimal allocation among the generators. The total load
power fluctuates ramdomly around an average value of 1800
kW; these fluctuations cause power imbalances, and the result-
ing frequency deviations are used by the individual generators
to adjust their power set-points according to (III.7). Note that
the load fluctuations are essential for creating the temporary
frequency deviations that drive the overall allocation towards
its optimum values; however, in practice, the same effect can
be obtained by deliberately introducing random fluctuations
into the generation power itself if desired. The iteration time
for the algorithm is taken to be 10 seconds. In this case
α1 = 0.0215 and α2 = 0.000075.

Figure 2 shows the individual generation powers as well as
the total cost as a function of time according to the distributed
algorithm. Also shown is the minimum cost obtained by a
numerical method based on neural network computing in [13].
We note that the algorithm matches within a few minutes the
cost achieved by the centralized method in [13] (which was
also verified by comparing with the lambda iteration method).

Figure 3 shows another example of a dispatch problem,
this time there are power losses in the grid that amounts
to approximately 1 − 2% of the total generated power. This
problem is solved using a numerical particle-swarm optimiza-
tion technique in [14]. While our distributed algorithm does
not specifically account for power losses, we expect from
the analysis of Section V that for the small levels of losses,
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Fig. 2. Performance of the distributed dispatch algorithm.

the algorithm should achieve near-optimal performance, and
we can indeed see from Fig. 3 that it eventually matches
the minimum cost achieved by the centralized optimization
algorithm in [14]. In this case, α1 = 0.06 and α2 = 0.001.
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Fig. 3. The distributed dispatch algorithm in a network with power losses.

VII. CONCLUSION

We proposed a new distributed approach to economic dis-
patch, where each generator independently adjusts its power in
response to frequency deviations on the grid, and we showed
that it is possible to achieve the minimum cost allocation using
such a method. We demonstrated through analysis and numer-
ical simulations the effectiveness of the distributed approach
and argued that it is especially attractive to an electric grid

with distributed generation, smart metering capabilities and
alternative energy sources.
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