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Distributed control for optimal economic dispatch

of a network of heterogeneous power generators
Raghuraman Mudumbai, Member IEEE, Soura Dasgupta Fellow IEEE, and Brian B. Cho

Abstract—In this paper, we present a simple, distributed
algorithm for frequency control and optimal economic dispatch of
power generators. In this algorithm each generator independently
adjusts its power-frequency set-points of generators to correct
for generation and load fluctuations using only the aggregate
power imbalance in the network, which can be observed by each
generator through local measurements of the frequency deviation
on the grid. In the absence of power losses, we prove that the
distributed algorithm eventually achieves optimality i.e. minimum
cost power allocations, under mild assumptions (strict convexity
and positivity of cost functions); we also present numerical results
from simulations to compare its performance with traditional
(centralized) dispatch algorithms. Furthermore, we show that
the performance of the algorithm is robust in the sense that
even with power losses it corrects for frequency deviations, and
for low levels of losses, it still achieves near-optimal allocations;
we present an approximate analysis to quantify the resulting
suboptimality.

I. INTRODUCTION

WE present a simple distributed algorithm for load

frequency control and economic dispatch in an electric

grid; in this algorithm each generator uses local knowledge

of its own cost of generation along with measurements of

frequency deviations to dynamically adjust its real power gen-

eration. We show that over time in the course of responding to

normal power fluctuations on the grid, the algorithm eventually

achieves the condition of optimal economic dispatch under

mild assumptions on the cost functions of the generators when

there are no line losses (and near-optimal allocations as long

as the line losses are not too large). This generalizes our

earlier work in [1] where optimality was achieved only when

all generators had the same underlying production cost i.e.

identical cost functions.

A. Motivation

This work is motivated by the anticipated needs of the

next generation electric grid which is expected to have smart

consumer end-nodes [2] and a high penetration of alternative

energy generators. Since the availability of alternative energy

sources such as wind and solar generators is inherently inter-

mittent in time and dispersed in geography [3], the ability

of the electric grid to dynamically adjust generation and

consumption is key to achieving a high load factor and efficient

energy use. Decentralized control techniques are well-suited
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to such a flexible electric grid, and this recognition has led

to an increased interest in concepts such as microgrids [4]

and distributed generation (DG) [5]. Similarly, decentralized

control techniques are extremely attractive to “smart grids” [6],

where there is the possiblity of controlling loads in addition

to generation, in response to real-time surplus or scarcity of

power in the electric grid.

In a traditional electric grid, control of generators, i.e.

Automatic Generation Control (AGC)1 is accomplished on

multiple time-scales using multiple different mechanisms [9].

Primary control is implemented in a distributed fashion at the

generators, but secondary and tertiary control (correspond-

ing to load frequency control (LFC) and economic dispatch

(ED) respectively) are implemented from a centralized control

station at the Load Serving Entity (LSE) and transmission

system operator (TSO) [10]. The goal of the secondary control

process is to reduce the Area Control Error (ACE) to zero. The

ACE is a measure of the imbalance between rated generation

capacity and power consumed within the control area, and the

LFC algorithm adjusts the power generation levels in order to

achieve power balance within the control area.

Traditionally, an ad hoc allocation is used by the secondary

controller to return ACE to zero without consideration of

cost minimization; the latter function is the responsibility of

the tertiary control process or economic dispatch (ED). The

economic dispatch process periodically re-allocates the total

power among generators to minimize total cost. Once set by

the dispatch algorithm, the power allocations may deviate over

time from their optimal values because of cumulative load

fluctuations and the actions of the secondary controller. The

dispatch problem is typically formulated as a multivariable

constrained optimization problem [11] that is then solved

using Lagrangian techniques such as “lambda iteration” [12].

However, when line losses are included in the model, the

dispatch problem becomes analytically intractable even with

simplified models for the generator cost functions. In previous

academic work on the dispatch problem, complex numerical

optimization methods such as genetic algorithms, particle

swarm optimization or Monte-Carlo methods [13], [14] are

often employed to determine the minimum cost allocation

of power across generators. In contrast, in the algorithm

described in this paper, there is no centralized dispatcher;

1Terms such as AGC [7], [8] may be used to mean slightly different things
in the technical literature from different parts of the world, partly mirroring
differences in the structure of the electric grid itself between Europe, North
America and so on. In this paper, AGC is used as a generic term to include the
hierarchy of mechanisms for frequency regulation, tie-line power flow control
and economic dispatch.
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instead each generator adjusts its own generation power it-

eratively and independently from other generators and this

procedure is shown (under some conditions) to quickly correct

for frequency deviations, and also eventually to converge to

minimum cost allocations automatically. Thus this iterative

procedure simultaneously performs the traditional functions of

load frequency control and economic dispatch i.e. secondary

and tertiary control.

The idea of using frequency deviations to control the power

imbalance between load and generation has been considered

before. As far back as 1980, the authors in [15] used the

biological metaphor of homeostatis to motivate a power system

where loads and generators dynamically adjust their power

flows to maintain equilibrium. For this purpose, it was pro-

posed that the system frequency could be used on short time-

scales and a market-based pricing scheme along with the

necessary metering and billing infrastructure for longer time-

scales. It is remarkable that this paper presciently anticipates

market-based pricing [16], [17], smart metering and other

major subsequent developments in the electric grid.

The dispatch algorithm described in this paper is very much

compatible with the vision outlined in [15]; we develop the

idea suggested in [15] of using frequency for power balancing

into a concrete, fully distributed algorithm and show that it

achieves minimum cost allocations under certain conditions.

In the decades since 1980, the electric grid has undergone

significant changes such as deregulation, market-based pricing,

increasing proportion of alternative energy sources and smart

metering infrastructure, all of which provide opportunities for

further developing this vision of a grid that adapts in a dynamic

and distributed fashion to achieve high energy efficiency.

The dispatch algorithm proposed in this paper can also be

thought of as an iterative Lagrangian optimization procedure

(see e.g. [18], Chap. 4). We explore this connection further in

Section IV.

B. Economic Dispatch and Electricity Markets

In recent decades, the electric power industry in the US

(and in other countries) has undergone a significant amount

of deregulation [19], [20]. The effect of this deregulation

is to introduce market-based competition to the electric grid

whereby different energy suppliers compete on price to pro-

vide power to the utility; this is in contrast to the previous

model where a single vertically integrated utility company

controlled generation, transmission and distribution of electric

power. Under the new deregulated model, independent power

producers are assigned generation schedules based on the

outcome of a bidding process on one or more wholesale

electricity markets (usually at least two markets on different

time-scales, a “real-time” and a “day ahead” market [21]),

and in this sense the generation schedule is determined in a

“decentralized” way.

Note, however, that the market process is decentralized at

the level of economic entities (i.e. generation companies and

independent power producers), not on the level of individual

generators. Each generation company still faces the engineer-

ing problem of optimally allocating the total generation among

the individual generators. Better dispatch algorithms can be

profitably used by power producers to make more competitive

bids and maximize their returns in the wholesale market [22].

The methods discussed in this paper are thus complementary

to the market-based pricing process.

Recent studies [23] have shown that Centralized Secu-

rity Constrained Economic Dispatch (SCED) methods [24]

are effective for managing conventional generators in the

deregulated environment while taking into account congestion

management and market operations in large-scale grids. The

distributed approach presented in this paper is not intended

as an alternative to these methods. However, it offers some at-

tractive features that make it potentially useful for applications

such as a grid with a significant number of small alternative

energy generators.

C. Contributions

Our proposed algorithm is based on the following simple

idea. If we neglect power losses, the minimum cost allocation

of power is achieved when the marginal cost of an additional

unit of generation is equal for all generators. Thus, when there

is a positive power imbalance (i.e. instantaneous load exceeds

rated generation), it is intuitively reasonable for a generator

with a lower marginal cost to increase its generation by a larger

amount than one with a higher marginal cost. Conversely,

when there is a negative power imbalance, it is reasonable

for a high marginal cost generator to reduce its generation by

a relatively larger amount. On the other hand, one must also

account for the fact that the generator whose cost function

has a higher second derivative, will undergo a faster rise in

its marginal cost for the same unit of added generation. The

algorithm of this paper accordingly modifies the algorithm of

[1] to accommodate this effect. As in [1], each generator has

access only to its own cost function, and (local) measurements

of frequency deviations which serves as an indirect measure

of the power imbalance in the grid.

Our distributed approach offers the following features that

makes it an interesting alternative to the traditional centralized

approach for certain applications.

1) Scalability. Centralized dispatch algorithms require

knowledge of the cost functions of each generator which

limits their scalability. Our algorithm is fully distributed

and thus, more scalable which makes it especially at-

tractive for power grids supplied by a large number of

small distributed generators.

2) Dynamic adaptability. The distributed algorithm re-

sponds automatically to changes in loads and in gen-

eration costs and modifies the power allocations accord-

ingly. This can be attractive when the generation and

loads are highly variable as in grids with a large number

of intermittent alternative energy generators.

3) Model independence. The distributed approach solves

the optimization problem in an iterative “online” fashion

and as such, does not require a detailed modeling of

power flows or line losses.

The main contribution of this paper is to describe a dis-

tributed algorithm for optimal dispatch of power generators,

Page 2 of 11IEEE PES Transactions on Power Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3

establish some of its optimality and convergence properties,

illustrate its performance using simulation results and mo-

tivate further research into new techniques for the control

and management of an electric grid with high penetration

of alternative energy sources and advanced capabilities such

as smart meters and flexible loads. Specifically, we show the

following properties:

(A) For a constant load our algorithm exponentially drives

the frequency deviation to zero, with or without power

losses.

(B) Whenever there is a power imbalance, the algorithm

reallocates the power generation across generators in

such a way as to reduce the difference between the

marginal costs of its constituent generators.

(C) If the load remains constant, under our algorithm, the

network corrects for the frequency deviations and may

reach an equilibrium without necessarily equalizing the

marginal costs. However, such a stationary point, with

zero frequency deviation but unequal marginal costs is

an unstable stationary point. Taken together with (B),

this implies that random load fluctuations will drive the

algorithm eventually to equal marginal costs.

(D) If power losses are negligible, equal marginal costs

implies optimality i.e. minimization of the total gener-

ation cost. Even with losses the algorithm continues to

eventually equalize the marginal costs; however this is

not optimal in general, in terms of minimization of total

generation cost. We demonstrate that near optimality is

achieved under small losses, and quantify the size of the

small resulting suboptimality.

We also present simulation results to illustrate the above

properties of the distributed algorithm and compare its perfor-

mance with traditional centralized dispatch algorithms.

The rest of this paper is organized as follows. We present

our fomulation of the dispatch problem and our mathematical

model in Section II. Section III describes the distributed

dispatch algorithm; some of the interesting optimality and con-

vergence properties of the algorithm are derived in Section IV

and Section V quantifies the level of suboptimality under small

losses. The performance of the algorithm is compared with

centralized dispatch methods and illustrated using numerical

simulation results in Section VI. Section VII concludes.

II. PROBLEM DESCRIPTION

We model the economic dispatch problem as follows. We

assume that there are N generators supplying power to the

grid. At time-step k, we denote the total power consumed by

Pload[k], power losses in the grid by Ploss[k], and the active

power set point for generator i at the rated system frequency

by Ri[k], i ∈ 1 . . . N . As a result, the power imbalance in the

system is given by

∆P [k] = Pload[k]−

N
∑

i=1

Ri[k] + Ploss[k] (II.1)

This model is illustrated in Fig. 1. We neglect the effects of

reactive power flows, voltage deviations and transients as is

standard for economic dispatch problems.

Fig. 1. Model of the electric grid for economic dispatch.

Note that Ri[k] represents the active power set-point; the

actual active power produced by each generator is determined

by its primary controller which uses Ri[k] as a reference.

More precisely, we assume that each generator is equipped

with a primary controller that implements a power-frequency

characteristic (see for e.g. [25]) with a negative droop, so that

the active power Pi[k] produced at time k is related to the grid

frequency f [k] as:

Pi[k] = Ri[k]− βi∆f [k] (II.2)

where ∆f [k]
.
= f [k]− f0

Note that at the rated frequency f0 (usually 60 Hz or 50 Hz),

Pi[k] ≡ Ri[k]. Since there is no energy storage in the grid,

conservation of energy requires that

Pload[k]−

N
∑

i=1

Pi[k] + Ploss[k] ≡ 0.

Combining (II.2) and (II.1), we get

∆P [k] = Pload[k]−

N
∑

i=1

Pi[k]−∆f [k]
∑

i

βi + Ploss[k]

= −β∆f [k] (II.3)

where we have denoted β
.
=
∑

i βi. In other words, the total

imbalance between the rated generation power and the load

causes a proportional frequency deviation ∆f [k] = 1
β
∆P [k]

on the grid that can be monitored continuously by each

generator. This is analogous to the ACE observed by the

secondary controller in a traditional LFC implementation. We

assume that β remains constant for all values of Ri[k] and

∆P [k]. This is a reasonable assumption for small frequency

deviations.

We now formally state the precise problem addressed in this

paper.

Problem Statement: Let Ji(P ) be the cost function2 for

2A time-varying cost function is one interesting way of accounting for the
intermittency of alternative energy generators and is therefore of considerable
interest. As long as the cost functions change over a time-scale significantly
slower than the dynamics of the dispatch algorithm, the ideas in this paper
can be applied to the time-varying case as well. For simplicity of presentation,
we assume fixed cost functions in this paper.
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generator i. The goal of the dispatch algorithm is to choose

the Ri[k] to force the power imbalance ∆P to zero and the

marginal costs J ′
i(Ri) to be eventually all equal.

Effectively this minimizes the total cost J =
∑N

i=1 Ji(Ri)
subject to ∆P = 0. The minimization is for the eventual cost

rather than the aggregate incurred while achieving steady state.

We assume that the cost functions Ji(·) satisfy certain math-

ematical properties that we describe next. Intuitively, these

assumptions require that the cost function be monotonically

increasing, convex and bounded. Let us denote the marginal

costs as:

J ′
i(P )

.
=

dJi(P )

dP
.

Assumption 2.1: Each Ji(·) is twice differentiable and

strictly convex. Specifically, there exist η1 > 0 and a positive

nondecreasing function f(·), that is finite for all finite argu-

ment, such that for all P , and i ∈ {1, · · · , N}, the second

derivative

J ′′
i (P )

.
=

d2Ji(P )

dP 2
,

satisfies η1 ≤ J ′′
i (P ) ≤ f(P ). Further J ′′

i (·) is piece-wise

continuous.

We also assume non-zero idling cost:

Assumption 2.2: There exists η2 > 0, such that J ′
i(0) > η2

for all i ∈ {1, · · · , N}.

The above assumptions require that all the cost functions

are twice differentiable with a positive piece-wise continuous

second derivative. In practice, cost functions are often obtained

heuristically and frequently modeled as a piece-wise linear

function [26], [27] of the generated power. We note that the

piece-wise linear cost function is just a convenient interpola-

tion of a small number of known points on the cost curve

[27]. They are useful mainly because it is possible to use

linear programming techniques with such functions, though

we are unaware of any algorithms that have a distributed

implementation. It will be evident in the next section that

the algorithm presented in this paper does not work for such

functions as J ′′
i (P ) is zero or undefined for piece-wise linear

functions, and J ′′
i appears in the denominator of the power

update kernel.

However, we note that as long as the marginal cost values at

the tabulated points are positive and increase with increasing

Pi, one can just as easily interpolate them by a convex

function, and thus implement our distributed algorithm using

these interpolated cost functions. Intuitively, these conditions

(i.e. non decreasing slope of cost functions) simply mean that

additional units of power become more expensive as generators

operate closer to their maximum and are usually satisfied by

most practical cost functions. For example the points tabulated

in Table 1 in [27] have all the properties that permit a convex

positive slope interpolant to exist.

At the same time a worthwhile line of future research

is to explore whether, the algorithm of this paper can be

modified to accommodate piecewise linear cost functions, that

are monotonically increasing with non-decreasing slopes. We

conjecture in Section IV that the algorithm in [1] can achieve

power balance and minimum cost allocations for piecewise

linear cost functions that have positive, increasing slope. Such

an analysis will be a subject of future work.

Finally we assume that the power losses in the grid vary

smoothly with the generator powers. We denote

R
.
= [R1, R2, . . . , RN ]T (II.4)

i.e. R(·) : R → R
N has elements representing the power set-

points across the generators. Further we denote the power loss

by

L(R)
.
= Ploss. (II.5)

Assumption 2.3: The function L(·) is nonnegative, differ-

entiable and satisfies:

γi(R)
.
=

∂L

∂Ri

≤ γ0 < 1.

Thus, the γi, represent the fraction of an additional unit of

power from generator i that is lost in the power grid.

Note that we do not assume any particular functional form

for L(R). Nor do we assume that the total power loss can

be written as a sum of individual loss terms that depend

separately on the Ri. Thus, for instance, Assumption 2.3 does

not preclude the possibility that an increase in one of the

generation powers Ri may actually decrease the total losses

in the system i.e. γi(R) can be negative (though we expect

that this would be unusual in practice).

In addition to the above assumptions, for the purposes

of the mathematical analysis in Section III, we also neglect

the commonly imposed maximum and minimum limits on

the power of the active generators. This assumption is not

necessary for the working of the algorithm, however it makes

the mathematical presentation considerably simpler.

It is easy to show using Lagrangian techniques that under

Assumption 2.1, and zero power loss, the solution to the

constrained optimization problem satisfies:

J ′
i(Ri) ≡

dJi(Ri)

dRi

= constant
.
= λ, ∀i ∈ {1 . . . N} (II.6)

Equation (II.6) has the well known interpretation that at the

minimum cost allocation of power, the marginal cost J ′
i(Ri)

of an additional unit of power is constant across all generators.

The optimal marginal cost is λ.

III. DISTRIBUTED ALGORITHM FOR OPTIMAL ECONOMIC

DISPATCH

We now describe our distributed algorithm. This is an

iterative algorithm under which at time-step k, generator i

updates its rated power as follows.

Ri[k + 1] =







Ri[k] +
(

α1∆P [k]
J ′
i
(Ri[k])J ′′

i
(Ri[k])

)

, ∆P [k] ≥ 0

Ri[k] + α2∆P [k]
J ′
i(Ri[k])

J ′′
i
(Ri[k])

, else

(III.7)

where α1 > 0 and α2 > 0 are paramaters controlling the rate

of adaptation. Note that all generators are calibrated with the

same value for these parameters.

The intuition behind (III.7) is explained as follows. When

the power imbalance ∆P [k] is positive, then the generators

make a small increase to their rated powers in inverse propor-

tion to their marginal cost. Thus generators with low marginal
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costs increase their allocation more rapidly than high cost

generators. Conversely when the ∆P [k] is negative, then the

low cost generator reduces its power less rapidly compared to

high cost generators. The inclusion of the second derivative

reflects the fact that a large second derivative causes larger

changes to the marginal costs.

Observe that to implement this algorithm each generator

only needs knowledge of its own cost function, in addition

to a term proportional to the load imbalance that can be

obtained by locally measuring the load frequency deviation.

Thus the algorithm is implemented totally locally. As will

be proved in the sequel, over time, this algorithm tends to

equalize the marginal costs across generators and thus leads

to the minimum cost solution, when Ploss[k] ≡ 0.

We next examine the properties of the algorithm in more

detail.

IV. PROPERTIES OF THE DISTRIBUTED DISPATCH

ALGORITHM

It is more convenient to analyze this algorithm by looking

at its continuous time version described as follows. The results

directly extend to the discrete time version for small αi. The

continuous time algorithm is as follows:

dRi(t)

dt
=







α1∆P (t)
(

1
J ′
i
(Ri(t))J ′′

i
(Ri(t))

)

, if ∆P (t) ≥ 0

α2∆P (t)
J ′
i(Ri(t))

J ′′
i
(Ri(t))

, otherwise

(IV.8)

Denote the vector corresponding to the optimal allocation

(II.6) by Ropt. Further let 1
.
= [1, 1, . . . , 1]T denote the

“all-ones” vector. Then we can write

∆P (t) ≡ Pload(t)− 1
T
R(t) + L(R(t)) (IV.9)

Observe, under Assumption 2.3, with

Γ(R) = [γ1(R), · · · , γN (R)]
T
, (IV.10)

with a constant load, we have:

∆Ṗ (t) = −1
T
Ṙ(t) + L̇(R(t))

= − [1− Γ(R)]
T
Ṙ(t). (IV.11)

Observe, regardless of whether γi(R) is negative, because of

Assumption 2.3, for all i the following holds:

1− γi(R) ≥ 1− γ0 > 0. (IV.12)

Consequently, with a positive ∆P (t), the Ṙi are strictly

positive, and

∆Ṗ (t) = − [1− Γ(R)]
T
Ṙ(t)

≤ − (1− γ0)1
T
Ṙ

≤ 0. (IV.13)

Similarly, when ∆P (t) is negative, the Ṙi are nonpositive,

and

∆Ṗ (t) = − [1− Γ(R)]
T
Ṙ(t)

≥ − (1− γ0)1
T
Ṙ

≥ 0. (IV.14)

We next prove the existence of a solution to (IV.8).

Theorem 4.1: Consider (IV.8), under assumptions 2.1,

2.2and 2.3, with R as in (II.4) and Pload(t) a positive constant.

Suppose for all i ∈ {1, · · ·N}, Ri(0) > 0, ∆P (0) is finite and

the parameters α1 > 0, α2 > 0. Then the solution to (IV.8)

exists and is unique. Further, for all i ∈ {1, · · · , N}, and all

t ≥ 0, J ′
i(Ri(t)) > 0 whenever ∆P (0) > 0. On the other

hand when ∆P (0) < 0 for all i ∈ {1, · · · , N}, and all t ≥ 0,

J ′
i(Ri(t)) ≥ 0.

Proof: Consider first the case where ∆P (0) > 0. Then

the first clause in (IV.8) applies at least until at some T > 0,

∆P (T ) = 0. In the interval t ∈ [0, T ), (IV.8) becomes:

d

dt
{J ′

i(Ri(t))}
2
= 2α1∆P (t). (IV.15)

Observe while J ′
i(Ri(t)) ≥ 0, {J ′

i(Ri(t))}
2

uniquely specifies

J ′
i(Ri(t)), which in turn, because of (2.1) uniquely specifies

Ri(t) and hence ∆P (t). Thus as ∆P (0) is finite, at least for

some ǫ > 0, and t ∈ [0, ǫ), a unique solution exists, and is in

fact continuous.

Further for all t ∈ [0, ǫ), the Ri(t) are strictly increasing, as

because of Assumption 2.1 are the J ′
i(Ri(t)). Further because

of (IV.13), ∆P (t) is decreasing and is hence bounded by

∆P (0). Thus extending this argument for t = ǫ and beyond, a

unique continuous solution exists for all t ∈ [0, T ). Then the

existence and uniqueness of the solution is guaranteed as by

definition ∆P (T ) = 0 and ∆P = 0 is a stationary point of

the algorithm.

Now suppose ∆P (0) < 0. Then the second clause in (IV.8)

applies at least until at some T > 0, ∆P (T ) = 0. In the

interval t ∈ [0, T ), (IV.8) becomes:

d

dt
{J ′

i(Ri(t))} = α2J
′
i(Ri(t))∆P (t). (IV.16)

Observe because of Assumption 2.1, J ′
i(Ri(t)) uniquely spec-

ifies Ri(t) and hence ∆P (t). Thus at least for some ǫ > 0, and

t ∈ [0, ǫ), a unique solution exists, and is again continuous.

Further for all t ∈ [0, ǫ), the Ri(t) are strictly deccreasing

as are the J ′
i(Ri(t)). Further, because of Assumption 2.3 and

(IV.11), ∆P (t) is increasing on this interval and hence has

magnitude bounded by |∆P (0)|. Thus arguing as above a

unique continuous solution exists for all t ∈ [0, T ). Then the

existence and uniqueness of the solution is again guaranteed

as ∆P = 0 is a stationary point of the algorithm.

The case of ∆P (0) = 0 is trivial, because it represents a

stationary point of the algorithm.

Finally, if ∆P (0) > 0, the Ri(t) and hence the J ′
i(Ri(t))

are nondecreasing. Consequently, under assumption (2.2),

J ′
i(Ri(t)) > 0 for all t. On the other hand if ∆P (0) < 0,

(IV.16) holds. Observe, J ′
i(Ri(t)) = 0 is a stationary point of

(IV.16). Thus, as J ′
i(Ri(0)) > 0 and the solution is continuous,

J ′
i(Ri(t)) ≥ 0 for all t.

We next show that (IV.8) induces ∆P (t) to converge

exponentially to zero.

Theorem 4.2: Under the conditions of Theorem 4.1 suppose

Pload(t) is a positive constant. Then the power imbalance

∆P (t) converges exponentially to zero.
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Proof: Let us first consider the case where the initial

power imbalance ∆P (0) > 0. Then it necessarily follows

that ∆P (t) ≥ 0, ∀t ≥ 0 i.e. that the power imbalance is

always non-negative. It also follows from (IV.8) that Ri(t), ∀i
are monotonically non-decreasing functions of time. Thus

Ri(t) ≥ Ri(0) and Ji(Ri(t)) ≥ Ji(Ri(0)) for all t ≥ 0.

Therefore, using (IV.13) we get:

d∆P (t)

dt
≤ − (1− γ0)1

T
Ṙ(t)

= −α1 (1− γ0)∆P (t)

N
∑

i=1

1

J ′
i(Ri(t))J ′′

i (Ri(t))
.

(IV.17)

We now assert that for some µ1 > 0,

d∆P (t)

dt
≤ −µ1∆P (t). (IV.18)

To establish a contradiction suppose (IV.18) is false. As

from (IV.8) Ri(t) are positive and increasing, because of

Assumption 2.1 for every ǫ > 0, there exists a t1 such that

0 <

N
∑

i=1

1

J ′
i(Ri(t1))J ′′

i (Ri(t1))
≤ ǫ. (IV.19)

Because of Assumption 2.1 this must mean that for every

M1 > 0 there is a t1 such that

max
i∈{1,··· ,N}

J ′
i(Ri(t1))J

′′
i (Ri(t1)) > M1.

Thus again from Assumption 2.1 for every M2 > 0 there is a

t1 such that

max
i∈{1,··· ,N}

Ri(t1) > M2.

Choose M2 = Pload. As all Ri(t) > 0, ∆P (t1) < 0.

This is impossible as, from Theorem 4.1, all trajectories

are continuous, ∆P (0) > 0 and ∆P = 0 is a stationary

point of (IV.8). Thus indeed (IV.18) holds. Consequently,

|∆P (t)| ≤ ∆P (0) exp(−µ1t) which is the desired result.

Now suppose that ∆P (0) < 0. Then for all t ≥ 0, ∆P (t) ≤
0. Thus for all t ≥ 0,

N
∑

i=1

Ri(t) ≥ Pload > 0. (IV.20)

Thus,

R∗ = max
i∈{1,··· ,N}

{Ri(0)} > 0,

and at every t, there is at least on i, for which Ri(t) > 0. From

Assumption 2.2 this implies that for every t, there exists an

i, such that J ′
i(Ri(t)) > 0. Further because of Theorem 4.1,

for all t ≥ 0 and all i ∈ {1, · · · , N}, J ′
i(Ri(t)) ≥ 0. Then,

because of Assumptions 2.1 and 2.2, for all t ≥ 0, we have

N
∑

i=1

J ′
i (Ri(t))

J ′′
i (Ri(t))

≥
η2

f(R∗)
= µ2 > 0. (IV.21)

Therefore, since ∆P (t) < 0, using (IV.14) we obtain:

d∆P (t)

dt
≥ −(1− γ0)1

T
Ṙ(t)

= −(1− γ0)α2∆P (t)
N
∑

i=1

J ′
i(Ri(t))

J ′′
i (Ri(t))

≥ −µ2α2(1− γ0)∆P (t) (IV.22)

and the result follows again as ∆P (t) < 0.

Note that Theorem 4.2 guarantees that the algorithm reaches

an equilibrium point exponentially fast. For technical facility,

the proof of the theorem uses bounds in e.g. (IV.21) that are

conservative and understate the rate of convergence. This result

can be trivially extended to show that when Pload(t) is not

constant, then ultimately the load deficit will be proportional

to the rate of change of the load and inversely proportional to

constants like µ2, i.e. slowly varying loads are well tracked.

The Theorem does not guarantee that the equilibrium point

has minimum cost in the lossless case. Indeed for a constant

load, ∆P (t) may converge before the marginals are equalized.

The next theorem shows that in fact the algorithm drives

the marginals towards equalization while a load imbalance

persists.

Theorem 4.3: Under the conditions of Theorem 4.1, sup-

pose ∆P (t) 6= 0, and for some i, j, J ′
i(Ri(t)) > J ′

j(Rj(t)).
Then

(

d(J ′
i(Ri(t))− J ′

j(Rj(t)))

dt

)

< 0.

Proof: Once again consider first the case of ∆P (0) > 0.

Then as ∆P (0) ≥ 0 for all t ≥ 0, we have that

d(J ′
i(Ri(t))− J ′

j(Rj(t)))

dt

= J ′′
i (Ri(t))

dRi(t)

dt
− J ′′

j (Rj(t))
dRj(t)

dt

= α1∆P (t)

(

1

J ′
i(Ri(t))

−
1

J ′
j(Rj(t))

)

=
α1∆P (t)

J ′
i(Ri(t))J ′

j(Rj(t))

(

J ′
j(Rj(t))− J ′

i(Ri(t))
)

< 0, (IV.23)

where the last inequality exploits the fact that because of

Theorem 4.1 the marginals are always positive.

On the other hand, when ∆P (0) < 0, as ∆P (t) ≤ 0 for all

t ≥ 0, there holds:

d(J ′
i(Ri(t))− J ′

j(Rj(t)))

dt

= J ′′
i (Ri(t))

dRi(t)

dt
− J ′′

j (Rj(t))
dRj(t)

dt
= α2∆P (t)

(

J ′
j(Rj(t))− J ′

i(Ri(t))
)

< 0. (IV.24)

To complete our study of equalization of marginals we next

present the following theorem.

Theorem 4.4: Assume the conditions of Theorem 4.1hold.

(a) Consider the stationary point where ∆P (t) = 0, but for
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some {i, j} ⊂ {1, · · · , N},

J ′
i(Ri(t)) 6= J ′

j(Rj(t)).

(b) Suppose there exists a stationary point such that ∆P (t) =
0, and for all {i, j} ⊂ {1, · · · , N},

J ′
i(Ri(t)) = J ′

j(Rj(t)).

Then this stationary point is unique and locally stable.

Proof: The convexity of the Ji(·) ensures that there is a

one to one mapping between J ′
i(Ri) and Ri. Suppose R

∗ is

the stationary point in (a). Then for every ǫ > 0 there is a

perturbation

δR = [δR1, · · · , δRN ]T ,

and R(0) = R
∗ + δR, such that ‖δR‖ < ǫ has the property

that for each pair i, j,
∣

∣J ′
i(Ri + δRi)− J ′

j(Rj + δRj)
∣

∣ ≤
∣

∣J ′
i(Ri)− J ′

j(Rj)
∣

∣

with strict inequality for at least one i, j pair. Then from

convexity and Theorem 4.3, the trajectory moves further away

from R. Hence from [28] this stationary point is locally

unstable.

Now consider a stationary point as in (b). To establish a

contradiction suppose there are two such stationary points

R1 and R2. Then atleast one element of R1 is larger than

its counterpart in R2, and another smaller. Then convexity

precludes the possibility of equal marginal costs.

Define the Lyapunov function:

V (R) =

N
∑

i=1

∑

j∈{1,··· ,N}{i}

(J ′
i(Ri)− J ′(Rj))

2
+ (∆P (t))2.

Observe V (R) ≥ 0 with equality iff R is the unique stationary

point defined in (b). Then from Theorem 4.4, and (IV.8) the

V̇ ≤ 0. Hence from [28] the result follows.

Taken together, the significance of Theorems 4.3 and 4.4,

is as follows. While ∆P (t) 6= 0, the algorithm will tend to

drive the marginals closer. If ∆P (t), becomes zero before the

marginals are equalized, then the slightest noise in the Ri or

load fluctuations that enforce the condition ∆P (t) 6= 0, will

again tend to drive the marginals closer to each other. Over

time the practical effect of this is to equalize the marginals.

Observe that all results in this section accommodate power

losses. Of course equalization of the marginals is suboptimal

unless the power losses are zero. Section V quantifies the level

of suboptimality under small power losses.

Remark. In view of the analysis presented above, we can

rewrite the update rule (IV.8) as

dJ ′
i(Ri(t))

dt
= Φ(Ri(t))∆P (t)

where Φ(R) =

{

α1

J ′
i
(R) , if ∆P (t) ≥ 0

α2J
′
i(R), otherwise

This is reminiscent of Lagrangian algorithms such as

lambda iteration, that iteratively “search through” the space of

marginal costs until the power imbalance is removed. Indeed,

by changing the step-size rule Φ(R), we can design an entire

family of distributed Lagrangian algorithms for the dispatch

problem. However, this family of algorithms can vary widely

in their convergence and stability properties and their analysis

is beyond our scope here. A more detailed exploration of such

algorithms is an important topic for future work.

We conclude this section by briefly addressing the issue

of piecewise linear cost functions with increasing slopes. In

this case second derivatives of all cost functions are equal,

and in fact zero, almost everywhere. Thus the weighting by

the reciprocal of the second derivative in (III.7) is not only

infeasible, but also unnecessary. Thus the algorithm of [1]

described below, duly modified to deal with points at which the

cost functions are non-differentiable, is a potential candidate:

Ri[k + 1] =

{

Ri[k] +
(

α1∆P [k]
J ′
i
(Ri[k])

)

, ∆P [k] ≥ 0

Ri[k] + α2∆P [k]J ′
i(Ri[k]), else

(IV.25)

The continuous time counterpart of this algorithm is:

dRi(t)

dt
=

{

α1∆P (t)
(

1
J ′
i
(Ri(t))

)

, if ∆P (t) ≥ 0

α2∆P (t)J ′
i(Ri(t)), otherwise

(IV.26)

It is readily seen that as long the marginal costs are all positive,

the argument in the proof of Theorem 4.2 goes through, and

∆P (t) converges exponentially to zero. As for the counterpart

of Theorem 4.3, let us consider the case where ∆P (t) > 0, the

argument for negative ∆P (t) being very similar. It is readily

seen that:

J ′
i(Ri(t)) > J ′

k(Rk(t)) ⇒
dRi(t)

dt
<

dRk(t)

dt
. (IV.27)

Hence as the cost functions are piecewise linear and have

increasing slopes, a simple argument shows that the marginal

costs must tend to approach each other. Actual equalization

will, however depend on whether there are operating points

at which all marginal costs are equal, and whether, these

operating points are compatible with the load requrements.

Indeed in the piecewise linear case equal marginal costs is

not necessary for optimality. We conjecture however, that

(IV.27) leads to eventual optimality in the case where the cost

functions are piecewise linear with positive increasing slopes.

V. LOSSY PERFORMANCE

Thus, with zero losses the algorithm eventually achieves

optimum performance. We now quantify the level of subopti-

mality when γ0 in Assumption 2.3 is nonzero but small. This is

physically reasonable because, recall that the γi (in the sequel

and here we drop the argument R), represents the fraction of

an additional unit of power that is lost in the power grid, and

in any well-designed grid, we expect this to be very small e.g.

γ0 < 10%. In this section we demonstrate that for small γ0,

the level of suboptimality is quadratic in γ0.

We note that Theorems 4.2 and 4.3 continue to hold

for the algorithm defined in (III.7) even with power losses,

however, it is no longer true that the equal marginal cost

allocation achieves the minimum cost. Indeed, we can show

using Lagrangian methods that the minimum cost allocation
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Ropt
.
= [R1,opt, R2,opt, . . . , RN,opt]

T satisfies
(

1

(1− γi)

dJi

dRi

)

Ri=Ri,opt

=

(

1

(1− γj)

dJj

dRj

)

Rj=Rj,opt

, ∀ i, j

(V.28)

We next show that the resulting sub-optimality is small pro-

vided that the marginal power losses (i.e. γi) are not too large.

We have noted that the algorithm of (III.7) tends to equalize

marginal cost allocation which may not be the same as (V.28).

Let us denote this equalized marginal cost allocation by R0
.
=

[R1,0, R2,0, . . . , RN,0]
T and the marginal cost corresponding

to this allocation as

λ0
.
=

(

dJi

dRi

)

Ri=Ri,0

≡

(

dJj

dRj

)

Rj=Rj,0

.

From our assumption that the marginal power losses are

small, under suitable smoothness assumptions, r
.
= Ropt−R0

will be small, where r ≡ [r1, r2, . . . , rN ]T is the deviation

of the equal marginal cost allocation from the minimum cost

allocation. Thus we can write
(

dJi

dRi

)

Ri=Ri,opt

≈

(

dJi

dRi

)

Ri=Ri,0

+ ri
d2Ji

dR2
i

= λ0

(

1 +
ri

λ0

d2Ji

dR2
i

)

(V.29)

Furthermore, since both R0 and Ropt satisfy the power

balance constraint, we have 1
T
Ropt − L(Ropt) ≡ 1

T
R0 −

L(R0) ≡ Pload. Thus we have 1
T
r = L(Ropt) − L(R0) ≡

∑

i γiri, which gives after rearrangement
∑

i(1 − γi)ri = 0.

Thus, it is not possible to have either ri ≥ 0, ∀i or ri ≤ 0, ∀i.
Without loss of generality, through a relabeling of generators

if need be, assume that r1 > 0 and r2 < 0. Using (V.28) and

(V.29), we have

1

(1− γ1)
λ0

(

1 +
r1

λ0

d2J1

dR2
1

)

≈
1

(1− γ2)
λ0

(

1 +
r2

λ0

d2J2

dR2
2

)

≤
λ0

(1− γ0)
(V.30)

where we have used the fact that γ2 ≤ γ0 and the assumption

that r2 < 0. Thus using the fact that γ1 < γ0, there holds:

r1 ≤
λ0γ0

(1− γ0)

1
d2J1

dR2

1

≤
λ0γ0

η1(1− γ0)
(V.31)

Using the same argument for all generators i, we have

|ri| ≤
γ0

(1− γ0)

λ0

η1
(V.32)

Finally we have

J(Ropt) ≡
∑

i

Ji(Ri,opt)

≈ J(R0) +
∑

i

ri

(

dJi

dRi,0

)

= J(R0) + λ0

∑

i

ri

= J(R0) + λ0 (L(R0)− L(Ropt)) (V.33)

≥ J(R0)− λ0γ0
∑

i

|ri|

≥ J(R0)−
Nγ2

0

(1− γ0)

λ2
0

η1
(V.34)

Equation (V.34) shows that the suboptimality of the equal

marginal cost solution varies with γ2
0 and therefore is small

provided the power loss is not too large. This observation is

verified by numerical simulation in Section VI.

VI. SIMULATION RESULTS AND GAIN SELECTION

We begin with some comments on the selection of the

gain parameters αi. These parameters affect only the rate of

convergence of the continuous time version of this algorithm,

rather than whether or not convergence occurs at all. In the

discrete time case of (III.7), however, too large a value of αi

may destablize.

To be specific consider the case where ∆P > 0, as similar

considerations affect the case where ∆P < 0. In this case

without losses and with constant Pload there holds:

∆P (t+ 1) = Pload − 1
T
R(t+ 1)

= Pload − 1
T
R(t)− 1

T (R(t+ 1)−R(t))

= ∆P (t)− α1∆P (t)

N
∑

i=1

1

J ′
i(Ri(t))J ′′

i (Ri(t))

≤ (1− µ1)∆P (t),

where µ1 is as defined in the proof of Theorem 4.2. Thus at

the minimum one must keep α1 small enough to ensure that

0 < µ1 < 1. This would require rough a priori estimates of

bounds on the initial marginal costs and their derivatives. Thus

an initial centralized intervention is needed to set the αi ac-

cordingly. Beyond this several other considerations intervene.

First, very small values of αi will cause slow convergence.

Second large values will cause poor noise performance. Third,

a stable network can be destabilized by large power swings.

Equally, it is a standard conclusion from stability theory,

exploited extensively in the adaptive systems literature, [29],

that sufficiently small fluctuations, ensured in this case by

sufficiently small αi, will leave an otherwise stable network

stable. Finally they must be kept small enough so that the

individual generator dynamics can cope with the demands of

the algorithm. To summarize, the αi must be chosen on a case

by case basis, according to the bounds, albeit rough, on the

anticipated loads and starting initial conditions, and on the

knowledge of the network and generator dynamics, and the

speed with which demands must be met. At the same time,

once the network has been fixed, this is a once only disign,
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that need not be changed absent substantial changes in the

network conditions.

We now present numerical results to provide some intuition

into the performance of the algorithm. The αi were selected in

these simulations using all the considerations note above bar-

ring the ones associated with network and generator dynamics.

We consider the dispatch problem considered in [13] (Example

7.4) of allocating 1800 kW of total generation in a small grid

with 6 generators. Each generator has a quadratic cost function

i.e. generator i has a cost given by Ji(R) ≡ ciR
2 + biR+ ai,

where ci > 0 guarantees the convexity of the cost function.

We simulated this system starting from an arbitrarily chosen,

suboptimal allocation among the generators. The total load

power fluctuates ramdomly around an average value of 1800
kW; these fluctuations cause power imbalances, and the result-

ing frequency deviations are used by the individual generators

to adjust their power set-points according to (III.7). Note that

the load fluctuations are essential for creating the temporary

frequency deviations that drive the overall allocation towards

its optimum values; however, in practice, the same effect can

be obtained by deliberately introducing random fluctuations

into the generation power itself if desired. The iteration time

for the algorithm is taken to be 10 seconds. In this case

α1 = 0.0215 and α2 = 0.000075.

Figure 2 shows the individual generation powers as well as

the total cost as a function of time according to the distributed

algorithm. Also shown is the minimum cost obtained by a

numerical method based on neural network computing in [13].

We note that the algorithm matches within a few minutes the

cost achieved by the centralized method in [13] (which was

also verified by comparing with the lambda iteration method).
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Fig. 2. Performance of the distributed dispatch algorithm.

Figure 3 shows another example of a dispatch problem,

this time there are power losses in the grid that amounts

to approximately 1 − 2% of the total generated power. This

problem is solved using a numerical particle-swarm optimiza-

tion technique in [14]. While our distributed algorithm does

not specifically account for power losses, we expect from

the analysis of Section V that for the small levels of losses,

the algorithm should achieve near-optimal performance, and

we can indeed see from Fig. 3 that it eventually matches

the minimum cost achieved by the centralized optimization

algorithm in [14]. In this case, α1 = 0.06 and α2 = 0.001.
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Fig. 3. The distributed dispatch algorithm in a network with power losses.

Figure 4 shows a simulation of a 3 generator system [12],

this time showing that the distributed algorithm effectively

reduces a large initial power imbalance of 100 kW to zero

within a small number of iterations. In practice, such a large

power imbalance may arise if a generator goes offline because

of a fault; significant transients can be expected under such

conditions, and we make no claim that Fig. 4 represents an

accurate model of the state of the generators in such a case.

Instead, this plot is intended to illustrate the fast exponential

convergence response property of the algorithm s shown in

Theorem 4.2. The parameter values for this simulation were

α1 = 0.031 and α2 = 0.000475.

Finally, we also simulated a 20 generator system to show

that the distributed algorithm scales well to larger systems.

This simulation is based on the dispatch problem described in

example 2 of [30] with one modification: we scaled up the

quadratic term (parameters ci in Table 2 of [30]) so that the

marginal costs of the generators vary over a larger range and

the performance of the algorithm is easier to visualize. This

example also has minimum and maximum constraints on the

power allocated to each generator, and thus also shows that

such constraints are easily handled by the distributed algo-

rithm. In this simulation, we used α1 = 0.45, α2 = 0.0007.

The simulation results are shown in Fig. 5; we note that as

expected the marginal costs of the generators become more

equal over time. However, there are power losses in this

example and therefore as discussed earlier the equal marginal

cost condition only approximately achieves the minimum cost.

VII. CONCLUSION

We proposed a new distributed approach to economic dis-

patch, where each generator independently adjusts its power in
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Fig. 4. Exponential convergence of power imbalance.
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Fig. 5. Total cost and marginal costs in a 20 generator system.

response to frequency deviations on the grid, and we showed

that it is possible to achieve the minimum cost allocation using

such a method. We demonstrated through analysis and numer-

ical simulations the effectiveness of the distributed approach

and argued that it is especially attractive to an electric grid

with distributed generation, smart metering capabilities and

alternative energy sources.

This opens up many interesting issues for future work.

While we focused on the economic dispatch problem in this

paper, it is also interesting to explore a distributed approach

to other problems such as reactive power control. Also while

the algorithm studied in this paper only uses measurements

of frequency deviations on the grid, the future electric grid

may offer communications infrastructure that provides much

more detailed information on the state of the grid (e.g. real-

time power flow measurements), and it is an interesting open

problem to develop techniques to use such information to

optimize the performance of the grid. Similarly, it would also

be interesting to consider how to best take advantage of energy

storage technologies to increase the efficiency of the electric

grid.

As noted in this paper some times one interpolates tabular

data to formulate piecewise linear cost functions that have

positive increasing derivatives. As noted in the paper, our

algorithm does not work in such cases. However, as also noted

in the paper such data can with facility be also interpolated by

convex cost functions with positive strictly increasing deriva-

tives to which our algorithm can be applied. Nonetheless we

have conjectured that our algorithm from [1] should work with

piecewise linear cost functions that have positive increasing

derivatives. A closer examination of this question is another

interesting topic for future work.

We observed earlier that our algorithm can be thought of

as an iterative implementation of Lagrangian optimization.

Exploring variations of this algorithm offering a variety of

convergence and stability properties is another interesting area

for future work.

Finally, this paper does not take network and generator dy-

namics explicitly into account. Another related open problem

is to design controllers for wind turbine and other alternative

energy generators that allow flexible real-time control over the

voltage, active and reactive power of the generators.
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